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AN ANALOGUE OF MILLOUX’S THEOREM FOR
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Abstract

The main purpose of this paper is to prove analogous of Milloux’s theorem for composite functions.
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1. Introduction and Definitions

In the value distribution theory, Milloux theorem plays a cardinal role to correlate the
characteristic function of a given meromorphic function with its derivatives. In 2016,
Dyavanal and Rathod [2] proved the same for the domain annuli and established some
interesting results as an application. Now it is natural to ask whether can we establish
the analogous of Milloux inequality for composite meromorphic and entire functions.

In the following, we introduce the definitions and notaions of [3] which will be
used in this paper.
Definition 1.1. The positive logarithmic function log+ x for x ≥ 0 is defined as
follows

log+ x = max(log x, 0).

For all x > 0, it is evident that

log x = log+ x − log+ 1
x
.

For a non-constant meromorphic function f (z) in the disc |z| ≤ R (0 < R < ∞),
Nevanlinna defined the following functions.
Definition 1.2. m(r, f ) = 1

2π

∫ 2π
0 log+ | f (reiθ)|dθ,

which is nothing but the average of the positive logarithm of | f (z)| on the circle |z| = r.
Definition 1.3. The counting function of poles of f (z), denoted by N(r, f ) is defined
as

N(r, f ) =

∫ r

0

n(t, f ) − n(0, f )
t

dt + n(0, f ) log r,
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where n(t, f ) is the number of poles of f (z) in the disc |z| ≤ t, multiple poles are
counted according to their multiplicities and n(0, f ) denotes the multiplicity of poles
of f (z) at the origin.
Definition 1.4. The characteristic function of f (z), denoted by T (r, f ) is defined as

T (r, f ) = m(r, f ) + N(r, f ) .

Definition 1.5. A meromorphic function a(z) is called a small function with respect to
a meromorphic function f (z) if

T (r, a) = S (r, f )

i.e.,
T (r, a) = o(T (r, f ))

i.e.,
T (r, a)
T (r, f )

→ 0 as r → ∞

possibly outside a set of finite linear measure.
In the value distribution theory, Milloux [3] proved the following remarkable

theorems to study the characteristic function of the derivative of a given function as
follows.

Theorem 1.1. Let f (z) be a non-constant meromorphic function in the complex plane.
If

Ψ(z) =

k∑
i=0

ai(z) f (i)(z) ,

where k is a positive integer and a0(z), a1(z), a2(z), ..., ak(z) are small functions of f (z),
then

m(r,
Ψ

f
) = S (r, f ) (1.1)

and
T (r,Ψ) ≤ T (r, f ) + kN̄(r, f ) + S (r, f ) ≤ (k + 1)T (r, f ) + S (r, f ) , (1.2)

f (i)(z) being the i-th order derivative of f (z).

Theorem 1.2. Let f (z) be a non-constant meromorphic function in the complex plane.
If

Ψ(z) =

k∑
i=0

ai(z) f (i)(z) ,

where k is a positive integer and a0(z), a1(z), a2(z), ..., ak(z) are small functions of f (z),
is not a constant, then

T (r, f ) < N̄(r, f ) + N(r,
1
f

) + N̄(r,
1

Ψ − 1
) − N0(r,

1
Ψ
′ ) + S (r, f ) , (1.3)

where in N0(r, 1
Ψ
′ ) only zeros of Ψ

′

not corresponding to the repeated roots of Ψ = 1
are to be considered.
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2. Preliminary Results

To reach the main results of this paper we need the following lemmas.

Lemma 2.1. [1] If f (z) is meromorphic and g(z) is entire then for all large values of r

T (r, f ◦ g) ≤ (1 + o(1))
T (r, g)

log M(r, g)
T (M(r, g), f ) . (2.1)

Lemma 2.2. [3] Let f (z) be a non-constant meromorphic function in the complex plane.
Then

m(r,
f
′

f
) = S (r, f ) . (2.2)

Lemma 2.3. For a non-constant meromorphic function f

N(r, f (k)) ≤ N(r, f ) + kN̄(r, f ) . (2.3)

Proof. Since N(r, f
′

) ≤ N(r, f ) + N̄(r, f ), we can write

N(r, f (k)) ≤ N(r, f (k−1)) + N̄(r, f (k−1))

≤ N(r, f (k−2)) + N̄(r, f (k−2)) + N̄(r, f (k−1))

≤ N(r, f (k−3)) + N̄(r, f (k−3)) + N̄(r, f (k−2)) + N̄(r, f (k−1))
... ... ...

≤ N(r, f ) + N̄(r, f ) + N̄(r, f
′

) + N̄(r, f
′′

) + ... + N̄(r, f (k−1))

= N(r, f ) + kN̄(r, f ), since N̄(r, f ) = N̄(r, f
′

) = N̄(r, f
′′

) = ... = N̄(r, f (k−1)) .

�

Lemma 2.4. [1] Let f (z) be a non-constant meromorphic function in the complex plane
and g(z) be a non-constant entire function other than a linear polynomial. Then for
sufficiently large r

N̄(r, f ◦ g) ≤
∑

|bi |≤M(r,g)

N̄(r,
1

g(z) − bi
) , (2.4)

where bi(i = 1, 2, ...) are poles of f .

3. Main Results

In this section we prove the following theorems, which are analogous of Milloux
results for composite functions.

Theorem 3.1. Let f (z) be a non-constant meromorphic function in the complex plane
and g(z) be a non-constant entire function other than a linear polynomial. If

Ψ(z) =

k∑
i=0

ai(z)( f ◦ g)(i)(z) ,
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where k is a positive integer and a0(z), a1(z), a2(z), ..., ak(z) are small functions of f (z),
then

m(r,
Ψ

f ◦ g
) = S (r1, f ) + S (r1, g) (3.1)

and

T (r,Ψ) ≤ (k + 2)[T (r1, f ) + T (r1, g)] + S (r1, f ) + S (r1, g) (3.2)

where r1 = M(r, g).

Proof. First we consider the case when Ψ(z) = ( f ◦ g)(k)(z) and use induction on the
number k to prove the conclusion of the theorem.

By Theorem 1.1 for non-constant meromorphic function f ◦ g and using Lemma
2.1 we have for all large values of r

m(r,
( f ◦ g)

′

f ◦ g
) = S (r, f ◦ g)

= o(T (r, f ◦ g))

= T (r, f ◦ g) o(1)

≤ [(1 + o(1))
T (r, g)

log M(r, g)
T (M(r, g), f )] o(1)

≤ [(1 + o(1))T (M(r, g), f )] o(1)

= o(1) T (r1, f ) , as r1 = M(r, g)

≤ o(1) [T (r1, f ) + T (r1, g)]

= o(T (r1, f )) + o(T (r1, g))

= S (r1, f ) + S (r1, g) . (3.3)

Again by using Lemma 2.1 and the assumption that g(z) is a non-constant entire
function other than a linear polynomial, we have for all large values of r

T (r, ( f ◦ g)
′

) = T (r, ( f
′

◦ g) g
′

)

≤ T (r, f
′

◦ g) + T (r, g
′

)

≤ [(1 + o(1))
T (r, g)

log M(r, g)
T (M(r, g), f

′

)] + T (r, g
′

)

≤ [(1 + o(1))T (M(r, g), f
′

)] + T (r, g
′

)

= (1 + o(1))T (r1, f
′

) + T (r, g
′

) , as r1 = M(r, g)

≤ (1 + o(1))T (r1, f
′

) + T (r1, g
′

)

≤
3
2

[T (r1, f
′

) + T (r1, g
′

)]. (3.4)
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Again, using Lemma 2.2 and Lemma 2.3, we have

T (r, f
′

) = m(r, f
′

) + N(r, f
′

)

≤ m(r, f ) + m(r,
f
′

f
) + N(r, f ) + N̄(r, f )

= T (r, f ) + m(r,
f
′

f
) + N̄(r, f )

= T (r, f ) + N̄(r, f ) + S (r, f ) (3.5)
≤ 2T (r, f ) + S (r, f ). (3.6)

Using (3.6) in (3.4) we get

T (r, ( f ◦ g)
′

) ≤
3
2

[2T (r1, f ) + S (r1, f ) + 2T (r1, g) + S (r1, g)]

= 3[T (r1, f ) + T (r1, g)] + S (r1, f ) + S (r1, g)
= (1 + 2)[T (r1, f ) + T (r1, g)] + S (r1, f ) + S (r1, g). (3.7)

Hence in view of (3.3) and (3.7), we can say that the theorem is true for k = 1.
Now we suppose that the theorem is true for k = n

i.e., m(r,
( f ◦ g)(n)

f ◦ g
) = S (r1, f ) + S (r1, g) (3.8)

and
T (r, ( f ◦ g)(n)) ≤ (n + 2)[T (r1, f ) + T (r1, g)] + S (r1, f ) + S (r1, g) . (3.9)

Now we have by using Lemma 2.1, Lemma 2.2 and (3.8)

m(r,
( f ◦ g)(n+1)

f ◦ g
) ≤ m(r,

( f ◦ g)(n+1)

( f ◦ g)(n) ) + m(r,
( f ◦ g)(n)

f ◦ g
)

≤ S (r, ( f ◦ g)(n)) + S (r1, f ) + S (r1, g)
= S (r, f ◦ g) + S (r1, f ) + S (r1, g)
= o(T (r, f ◦ g)) + S (r1, f ) + S (r1, g)
= T (r, f ◦ g) o(1) + S (r1, f ) + S (r1, g)

≤ [(1 + o(1))
T (r, g)

log M(r, g)
T (M(r, g), f )] o(1) + S (r1, f ) + S (r1, g)

≤ (1 + o(1))T (M(r, g), f ) o(1) + S (r1, f ) + S (r1, g)
= o(1) T (r1, f ) + S (r1, f ) + S (r1, g) , as r1 = M(r, g)
= o(T (r1, f )) + S (r1, f ) + S (r1, g)
= S (r1, f ) + S (r1, f ) + S (r1, g)
= S (r1, f ) + S (r1, g). (3.10)
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Now using Lemma 2.1, (3.5) and (1.2) for the function ( f ◦ g)(n), we have

T (r, ( f ◦ g)(n+1)) ≤ T (r, ( f ◦ g)(n)) + N̄(r, ( f ◦ g)(n)) + S (r, ( f ◦ g)(n))

≤ [T (r, ( f ◦ g)) + nN̄(r, f ◦ g) + S (r, f ◦ g)] + N̄(r, ( f ◦ g)(n)) + S (r, ( f ◦ g)(n))

= T (r, ( f ◦ g)) + (n + 1)N̄(r, f ◦ g) + S (r, f ◦ g) + S (r, ( f ◦ g)(n)) ,

since N̄(r, ( f ◦ g)(n)) = N̄(r, f ◦ g)

≤ (n + 2)T (r, f ◦ g) + S (r, f ◦ g)

≤ (n + 2)[(1 + o(1))
T (r, g)

log M(r, g)
T (M(r, g), f )] + o(T (r, f ◦ g))

≤ (n + 2)[(1 + o(1))T (r1, f )] + T (r, f ◦ g) o(1)

≤ (n + 2)(1 + o(1))T (r1, f ) + [(1 + o(1))T (r1, f )] o(1)

≤ (n + 3)T (r1, f ) + o(1) T (r1, f )

≤ (n + 3)[T (r1, f ) + T (r1, g)] + o(1) [T (r1, f ) + T (r1, g)]

= (n + 3)[T (r1, f ) + T (r1, g)] + o(T (r1, f )) + o(T (r1, g))

= (n + 3)[T (r1, f ) + T (r1, g)] + S (r1, f ) + S (r1, g). (3.11)

In view of (3.10) and (3.11) we can say that the theorem is true for k = n + 1 as well.
Now we consider the general case.
Clearly

m(r,
Ψ

f ◦ g
) = m(r,

∑k
i=0 ai(z)( f ◦ g)(i)(z)

f ◦ g
)

≤

k∑
i=0

m(r,
ai( f ◦ g)(i)

f ◦ g
) + log(k + 1)

≤

k∑
i=0

[m(r, ai) + m(r,
( f ◦ g)(i)

f ◦ g
)] + log(k + 1)

≤ S (r1, f ) + S (r1, g) , (3.12)

since ai(i = 0, 1, 2, ..., k) are small functions of f and m(r, ( f◦g)(i)

f◦g ) = S (r1, f ) + S (r1, g)
for all i which is already proved by induction.

Also using (3.12), we have

m(r,Ψ) ≤ m(r, f ◦ g) + m(r,
Ψ

f ◦ g
)

≤ m(r, f ◦ g) + S (r1, f ) + S (r1, g). (3.13)

Again, by using Lemma 2.3 and the fact that ai(i = 0, 1, 2, ..., k) are small functions of
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f , we have

N(r,Ψ) = N(r,
k∑

i=0

ai(z)( f ◦ g)(i)(z))

≤ N(r,
k∑

i=0

ai( f ◦ g)(k))

= N(r, ( f ◦ g)(k)
k∑

i=0

ai)

≤ N(r, ( f ◦ g)(k)) +

k∑
i=0

N(r, ai)

≤ N(r, f ◦ g) + kN̄(r, f ◦ g) + S (r1, f ). (3.14)

Thus by using (3.13), (3.14) and the Lemma 2.1, we get

T (r,Ψ) = m(r,Ψ) + N(r,Ψ)
≤ [m(r, f ◦ g) + S (r1, f ) + S (r1, g)] + [N(r, f ◦ g) + kN̄(r, f ◦ g) + S (r1, f )]
= m(r, f ◦ g) + N(r, f ◦ g) + kN̄(r, f ◦ g) + S (r1, f ) + S (r1, g)
= T (r, f ◦ g) + kN̄(r, f ◦ g) + S (r1, f ) + S (r1, g)
≤ (k + 1)T (r, f ◦ g) + S (r1, f ) + S (r1, g)

≤ (k + 1)[(1 + o(1))
T (r, g)

log M(r, g)
T (M(r, g), f )] + S (r1, f ) + S (r1, g)

≤ (k + 1)[(1 + o(1))T (M(r, g), f )] + S (r1, f ) + S (r1, g)
≤ (k + 1)(1 + o(1))T (r1, f ) + S (r1, f ) + S (r1, g)
≤ (k + 2)T (r1, f ) + S (r1, f ) + S (r1, g)
≤ (k + 2)[T (r1, f ) + T (r1, g)] + S (r1, f ) + S (r1, g),

which completes the proof of the theorem. �

Note 3.1. : It can be noted that when g(z) = z then we have

T (r,Ψ) ≤ (k + 2)T (r, f ) + S (r, f )

instead of
T (r,Ψ) ≤ (k + 1)T (r, f ) + S (r, f )

of the result of Theorem 1.1

Theorem 3.2. Let f (z) be a non-constant meromorphic function in the complex plane
with n distinct poles and g(z) be a non-constant entire function except a linear
polynomial such that f ◦ g does not have any zero inside |z| ≤ r. Also let

Ψ(z) =

k∑
i=0

ai(z)( f ◦ g)(i)(z) ,
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where k is a positive integer and a0(z), a1(z), a2(z), ..., ak(z) are small functions of f (z).
If Ψ(z) is not a constant, then

T (r, f ◦ g) ≤ nT (r, g) + N̄(r,
1

Ψ − 1
) − N0(r,

1
Ψ
′ ) + S (r1, f ) + S (r1, g),

where r1 = M(r, g) and in N0(r, 1
Ψ
′ ) only zeros of Ψ

′

not corresponding to the repeated
roots of Ψ = 1 are to be considered.

Proof. First we apply Nevanlinna Second Fundamental Theorem to the non-constant
meromorphic function Ψ(z) where 0, 1 being the distinct finite complex numbers, to
get

m(r,Ψ) + m(r,
1
Ψ

) + m(r,
1

Ψ − 1
) ≤ 2T (r,Ψ) − N1(r) + S (r,Ψ) (3.15)

where
N1(r) = 2N(r,Ψ) − N(r,Ψ

′

) + N(r,
1
Ψ
′ ). (3.16)

Also using (3.16) and Nevanlinna First Fundamental Theorem, we have

2T (r,Ψ) − N1(r) = T (r,Ψ) + T (r,Ψ) − [2N(r,Ψ) − N(r,Ψ
′

) + N(r,
1
Ψ
′ )]

= [m(r,Ψ) + N(r,Ψ)] + [T (r,
1

Ψ − 1
) + O(1)] − 2N(r,Ψ) + N(r,Ψ

′

)

− N(r,
1
Ψ
′ )

= m(r,Ψ) + [m(r,
1

Ψ − 1
) + N(r,

1
Ψ − 1

)] + [N(r,Ψ
′

) − N(r,Ψ)]

− N(r,
1
Ψ
′ ) + O(1)

= m(r,Ψ) + m(r,
1

Ψ − 1
) + [N(r,Ψ

′

) − N(r,Ψ)] + [N(r,
1

Ψ − 1
)

− N(r,
1
Ψ
′ )] + O(1). (3.17)

Now by using Lemma 2.4, Nevanlinna First Fundamental Theorem, the fact that
ai(i = 0, 1, 2, ..., k) are small functions of f and assuming b j( j = 1, 2, ..., n) are poles
of f , we have

N(r,Ψ
′

) − N(r,Ψ) = N̄(r,Ψ)

= N̄(r,
k∑

i=0

ai( f ◦ g)(i))

= N̄(r,
k∑

i=0

ai( f ◦ g))

= N̄(r, ( f ◦ g)
k∑

i=0

ai)
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≤ N̄(r, f ◦ g) + N̄(r,
k∑

i=0

ai)

≤
∑

|b j |≤M(r,g)

N̄(r,
1

g − b j
) +

k∑
i=0

N̄(r, ai)

≤
∑

|b j |≤M(r,g)

T (r,
1

g − b j
) + S (r, f )

≤ n[T (r, g) + O(1)] + S (r, f )
= nT (r, g) + S (r, f ). (3.18)

And since in N0(r, 1
Ψ
′ ) only zeros of Ψ

′

not corresponding to the repeated roots of
Ψ − 1 = 0 are to be considered, we have

N(r,
1

Ψ − 1
) − N(r,

1
Ψ
′ ) = N(r,

1
Ψ − 1

) − [N(r,
1

(Ψ − 1)′
) + N0(r,

1
Ψ
′ )]

= [N(r,
1

Ψ − 1
) − N(r,

1
(Ψ − 1)′

)] − N0(r,
1
Ψ
′ )

= N̄(r,
1

Ψ − 1
) − N0(r,

1
Ψ
′ ). (3.19)

Using (3.18) and (3.19) in (3.17) we get

2T (r,Ψ)−N1(r) ≤ m(r,Ψ) + m(r,
1

Ψ − 1
) + nT (r, g) + N̄(r,

1
Ψ − 1

)−N0(r,
1
Ψ
′ ) + S (r, f ).

(3.20)
Again since r1 = M(r, g), from (3.2) we get

o(T (r,Ψ)) ≤ (k + 2)[o(T (r1, f )) + o(T (r1, g))] + S (r1, f ) + S (r1, g).

i.e., S (r,Ψ) ≤ (k + 2)[S (r1, f ) + S (r1, g)] + S (r1, f ) + S (r1, g)
= S (r1, f ) + S (r1, g). (3.21)

Now we use (3.20) in (3.15) to get

m(r,Ψ) + m(r,
1
Ψ

) + m(r,
1

Ψ − 1
) ≤ m(r,Ψ) + m(r,

1
Ψ − 1

) + nT (r, g) + N̄(r,
1

Ψ − 1
)

− N0(r,
1
Ψ
′ ) + S (r, f ) + S (r,Ψ)

i.e., m(r,
1
Ψ

) ≤ nT (r, g) + N̄(r,
1

Ψ − 1
) − N0(r,

1
Ψ
′ ) + S (r, f ) + S (r1, f ) + S (r1, g)

using (3.21)

≤ nT (r, g) + N̄(r,
1

Ψ − 1
) − N0(r,

1
Ψ
′ ) + S (r1, f ) + S (r1, g), (3.22)

since S (r, f ) ≤ S (r1, f ) as r ≤ r1 = M(r, g).
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Now by using Jensen-Nevanlinna formula, (3.1), (3.22) and the fact that f ◦ g does not
have any zero inside |z| ≤ r implying N(r, 1

f◦g ) = 0, we get

T (r, f ◦ g) = T (r,
1

f ◦ g
) + O(1)

= m(r,
1

f ◦ g
) + N(r,

1
f ◦ g

) + O(1)

≤ m(r,
Ψ

f ◦ g
) + m(r,

1
Ψ

) + O(1)

≤ [S (r1, f ) + S (r1, g)] + nT (r, g) + N̄(r,
1

Ψ − 1
) − N0(r,

1
Ψ
′ ) + S (r1, f ) + S (r1, g)

≤ nT (r, g) + N̄(r,
1

Ψ − 1
) − N0(r,

1
Ψ
′ ) + S (r1, f ) + S (r1, g) ,

which completes the proof of the theorem. �

4. Concluding Remark

Here the composition of functions f and g are so taken that f is a non-constant
meromorphic function and g is restricted to be an entire function other than a linear
polynomial. So, the scope for studying the analogy when g is not restricted to be an
entire function only remains open. Also, here the result corresponding to Milloux’s
theorem is proved for composition of only two functions. But the scope for finding the
same for composition of n such functions remains open.
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