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FIXED POINT RESULTS ON DUALISTIC PARTIAL METRIC 
SPACES
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Abstract

In this paper, we obtain a fixed point result utilizing F-functions in the context of dualistic partial metric 
space. Our result generalizes recent results in [5], [7] and many others. An illustrative example is 
included. Additionally, we highlight mathematical bugs that appear in some recent papers in the context 
of dualistic partial metric space.
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1. Introduction

Matthews [1] introduced the partial metric space by observing that the self-distance of 
a point need not be zero. He also obtained Banach fixed point theorem in the context 
of partial metric space. Neill [10] extended the range set of partial metric space to the 
set of real numbers, and introduced dualistic partial metric space. Further, Oltra et. al.
[11] investigate Banach fixed point theorem in the dualistic partial metric space.

Theorem 1.1 ([11]). Let f be a mapping of a complete dualistic partial metric space 
(X, p) into itself such that there is a real number c with 0 ≤ c < 1, satisfying

|p( f (x), f (y))| ≤ c|p(x, y)|,

for all x, y ∈ X. Then f has a unique fixed point.

Afterthat many fixed point theorems in dualistic partial metric space, have been 
obtained by various researchers. See, [2–9, 12], and references therein.

In 2012, Wardowski [13] obtained a fixed point theorem using F−contraction in 
the complete metric space. Inspired by this, Nazam et. al. [7] in 2021 studied a class 
of function F = {F|F : (0, ∞) → R} satisfying the following properties:
(i) F is strictly increasing,
(ii) For any sequence of positive terms {an}, limn→∞ an = 0⇔ limn→∞ F(an) = −∞,
(iii) There is k in (0, 1) such that limα→0+ αkF(α) = 0.
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Nazam et. al. [7] also obtained a fixed point result on the dualistic partial metric space
by utilizing the above F-functions.

Theorem 1.2 ([7]). Let (X, d) be a complete dualistic partial metric space, F ∈ F , and
T : X → X be a continuous mapping for which there exist τ > 0 such that, for all
x, y ∈ X, the following implication holds:

d(T x,Ty) , 0⇒ τ + F(|d(T x,Ty)|) ≤ F(|d(x, y)|). (1.1)

Then T possesses a unique fixed point.

In this paper, we obtain a fixed point result using F-contraction in the dualistic
partial metric space. Our result generalizes recent results in [7], [5] and many others.
An illustrative example is also included.

2. Preliminaries

Now, we recall some important definitions, remarks, and lemmas needed for this
work.

Definition 2.1 ([1]). Let X be a non-empty set. A partial metric on X is a mapping
p : X × X → R+ such that for all x, y, z ∈ X,
(i) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y)
(ii) p(x, x) ≤ p(x, y)
(iii) p(x, y) = p(y, x)
(iv) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).
The pair (X, p) is said to be a partial metric space.

Definition 2.2 ([10]). Let X be a non-empty set. A dualistic partial metric on X is a
mapping d : X × X → R such that for all x, y, z ∈ X,
(i) x = y ⇐⇒ d(x, x) = d(x, y) = d(y, y)
(ii) d(x, x) ≤ d(x, y)
(iii) d(x, y) = d(y, x)
(iv) d(x, y) ≤ d(x, z) + d(z, y) − d(z, z).
The pair (X, d) is said to be a dualistic partial metric space.

Remark 2.3 ([7, 11]). Each partial metric space is dualistic partial metric space. But
the converse is not true in general.

Remark 2.4 ([11]). Let (X, d) be a dualistic partial metric space. Then, the open
ball centered at x0 ∈ X and radius r > 0 is denoted by B(x0, r), and defined as
B(x0, r) = {x ∈ X : d(x, x0) < r + d(x0, x0)}. The collection of all open balls form
a base for the topology τd in X.

Remark 2.5 ([11]). If (X, d) is a dualistic partial metric space, then the function
d∗ : X × X → R+ such that

d∗(x, y) = d(x, y) − d(x, x), (2.1)
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is a quasi metric on X; and,

D∗d(x, y) = max{d∗(x, y), d∗(y, x)} (2.2)

is a metric on X. It is said to be an induced metric on (X, d).

Definition 2.6 ([11]). Let (X, d) be a dualistic partial metric space. Then,
(i) a sequence {xn} in X is said to be convergent to a point x ∈ X if and only if

limn→∞ d(xn, x) = d(x, x),
(ii) a sequence {xn} in X is called a Cauchy sequence if limm,n→∞ d(xm, xn) exists

(and finite),
(iii) X is said to be complete if every Cauchy sequence in it converges to a point x ∈ X

with respect to τd. Furthermore,

lim
m,n→∞

d(xm, xn) = d(x, x).

Lemma 2.7 ([11]). Let (X, d) be a dualistic partial metric space. Then,
(i) every Cauchy sequence {xn} in (X,D∗d) is also a Cauchy sequence in (X, d);
(ii) (X, d) is complete if and only if the induced metric space (X,D∗d) is complete;
(iii) a sequence {xn} in X converges to an element x ∈ X with respect D∗d if and only

if
lim
n→∞

d(x, xn) = d(x, x) = lim
m,n→∞

d(xm, xn).

Recently, Nazam et. al. [5] introduce convergence comparison property as follows:

Definition 2.8 ([5]). Let (X, d) be a dualistic partial metric space and T : X → X be
a mapping. A mapping T has a convergence comparison property (CCP) if for every
{xn} in X such that xn → x,T satisfies the following condition:

d(x, x) ≤ d(T x,T x).

3. Main Result

First, we prove a fixed point result using F-functions in the dualistic partial metric
space.

Theorem 3.1. Let (X, d) be a complete dualistic partial metric space. Let T : X → X
be a mapping and F ∈ F . Suppose, there exist τ > 0 such that

d(T x,Ty) , 0 =⇒ τ + F(|d(T x,Ty)|) ≤ F(M(x, y)), ∀ x, y ∈ X (3.1)

where

M(x, y) = max {|d(x, y)|, |d(x,T x)|, |d(y,Ty)|} ,

If T is continuous or T has a convergence comparison property (CCP), then T
possesses a unique fixed point.
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Proof. Let x0 ∈ X. Define a sequence {xn} in X by xn+1 = T xn for all n ∈ N. Clearly, if
there is n0 such that xn0+1 = xn0 , then the proof is complete. So, assume that xn+1 , xn

for each n ∈ N. Using equation (3.1), we have

F(|d(xn, xn+1)|) ≤ F(M(xn−1, xn)) − τ, (3.2)

where

M(xn−1, xn) = max {|d(xn−1, xn)|, |d(xn−1,T xn−1)|, |d(xn, xn+1)|}
= max {|d(xn−1, xn|, |d(xn, xn+1)|}

IfM(xn−1, xn) = |d(xn, xn+1)|, then equation (3.2) becomes

F(|d(xn, xn+1)|) ≤ F(M(xn−1, xn)) − τ = F(|d(xn, xn+1)|) − τ,

which is a contradiction. Hence,M(xn−1, xn) = |d(xn−1, xn)|. So, from (3.2), we have

F(|d(xn, xn+1)|) ≤ F(M(xn−1, xn)) − τ = F(|d(xn−1, xn)|) − τ,

Thus, we get

F(|d(xn, xn+1)|) ≤ F(|d(xn−1, xn)|) − τ
≤ F(|d(xn−2, xn−1)|) − 2τ

...

≤ F(|d(x0, x1)|) − nτ. (3.3)

Letting n→ ∞, we have

lim
n→∞

F(|d(xn, xn+1)|) = −∞. (3.4)

By using (F2), we have

lim
n→∞
|d(xn, xn+1)| = 0. (3.5)

Now, consider the self distances, for n ∈ N,

F(|d(xn, xn)|) ≤ F(M(xn−1, xn−1)) − τ, (3.6)

where

M(xn−1, xn−1) = max {|d(xn−1, xn−1)|, |d(xn−1, xn)|, |d(xn−1, xn)|}
= max {|d(xn−1, xn−1)|, |d(xn−1, xn)|}

Case 1: IfM(xn−1, xn−1) = |d(xn−1, xn−1)|, then from (3.6), we have

F(|d(xn, xn)|) ≤ F(|d(xn−1, xn−1)|) − τ,
≤ F(|d(x0, x0)|) − nτ.
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Case 2: IfM(xn−1, xn−1) = |d(xn−1, xn)|, then from (3.6), we have

F(|d(xn, xn)|) ≤ F(|d(xn−1, xn)|) − τ,
≤ F(|d(x0, x1)|) − nτ.

Letting n→ ∞ in both cases, we have

lim
n→∞
|d(xn, xn)| = 0.

Continuing from (3.5), using property (iii) of F-functions, there is h ∈ (0, 1) such that

lim
n→∞
|d(xn, xn+1)|hF(|d(xn, xn+1)|) = 0.

From (3.3),

|d(xn, xn+1)|hF(|d(xn, xn+1)|) ≤ |d(xn, xn+1)|h[F(|d(x0, x1)|) − nτ],
|d(xn, xn+1)|h[F(|d(xn, xn+1)|) − F(|d(x0, x1)|)] ≤ |d(xn, xn+1)|hnτ ≤ 0.

Letting n → ∞ and taking advantage of the properties of the function F, we get that
n|d(xn, xn+1)|h → 0 as n→ ∞. There is N1 ∈ N such that

|d(xn, xn+1)| ≤
1

n
1
h

, n ≥ N1. (3.7)

Similarly, there is N2 ∈ N such that, for any n ≥ N2,

|d(xn, xn)| ≤
1

n
1
h

, n ≥ N2. (3.8)

From (3.7) and (3.8), consider m > n ≥ max{N1,N2},

d∗(xn, xm) ≤

m−n−1∑
i=0

d∗(xn+i, xn+i+1)

≤

m−n−1∑
i=0

(|d(xn+i, xn+i+1)| + |d(xn+i, xn+i)|)

≤ 2
m−n−1∑

i=0

1

i
1
h

.

Taking the limit to∞, it follows that d∗(xn, xm) converges to 0. Applying an analogous
procedure, we get that d∗(xm, xn) → 0, hence, D∗d(xn, xm) → 0, so {xn} is a Cauchy
sequence in the complete metric space (M,D∗d). Let x be its limit. Then, by lemma 2.7

lim
n→∞

d(xn, x) = d(x, x) = lim
m,n→∞

d(xn, xm). (3.9)

Also, observe that

0 = lim
n,m→∞

d∗(xn, xm) = lim
n,m→∞

[d(xn, xm) − d(xn, xn)]

=⇒ lim
n,m→∞

d(xn, xm) = lim
n→∞

d(xn, xn) = 0.
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Consequently, limn,m→∞ d(xn, xm) = 0 and so {xn} is a Cauchy sequence in (X, d). From
(3.9), we obtain

lim
n→∞

d(xn, x) = d(x, x) = 0.

Now, we show that x is a fixed point of T .
From equation (3.1), we have

F(|d(xn,T x)|) ≤ F(M(xn−1, x)) − τ (3.10)

whereM(xn−1, x) = max{|d(xn−1, x)|, |d(xn−1,T xn−1)|, |d(x,T x)|}. As n → ∞ in (3.10),
we have

F(|d(x,T x)|) ≤ F(|d(x,T x)|) − τ,

which is a contradiction. So, d(x,T x) = 0.
If T is a continuous mapping, then {T xn} converges to T x. This implies that

d(T xn,T x)→ d(T x,T x) as n→ ∞. So, d(xn+1,T x)→ d(T x,T x) as n→ ∞. Also,

d(x,T x) ≤ d(x, xn+1) + d(xn+1,T x) − d(xn+1, xn+1),
and d(xn+1,T x) ≤ d(xn+1, x) + d(x,T x) − d(x, x);

by considering n → ∞, we have d(x,T x) ≤ d(T x,T x) and d(T x,T x) ≤ d(x,T x).
Thus, d(x,T x) = d(T x,T x). Thus, d(x, x) = d(x,T x) = d(T x,T x) = 0. So, T x = x.

If T has CCP, then 0 = d(x, x) ≤ d(T x,T x). Also, d(T x,T x) ≤ d(x,T x) = 0. Thus,
d(x, x) = d(x,T x) = d(T x,T x) = 0. So, T x = x.

Now, we prove the uniqueness of the fixed point of T . Assume that x and y are two
distinct fixed points of T . If d(x, y) , 0, then the following relations hold true:

F(|d(x, y)|) = F(|d(T x,Ty)|) ≤ F(|d(x, y)|) − τ,

which is contradiction. Therefore, d(x, y) = 0. Similarly, it can be proved that
d(x, x) = 0 and d(y, y) = 0. It follows that x = y, and so the fixed point is unique. �

Now, we illustrate our result through an example.

Example 3.2. Let X = {0,−2,−0.1} and d : X × X → R; where,

d(x, y) =

{
|x − y|, x , y
max{x, y}, x = y.

Then (X, d) is a complete dualistic partial metric space. Define a mapping T : X → X
by

T (x) =

{
0, x ∈ {0,−0.1}

−0.1, x = −2

For cases x = y = 0; x = 0, y = −0.1; x = −0.1, y = 0; and x = y = −0.1, we have
d(T x,Ty) = 0. So, condition (3.1) of our result is trivially true. Rest of the cases are
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as follow:
Case 1: If (x, y) ∈ {(0,−2), (−2, 0)}, then

|d(T0,T (−2))| = |d(T (−2),T0)| = 0.1; M(0,−2) =M(−2, 0) = 2.

Case 2: If (x, y) ∈ {(−0.1,−2), (−2,−0.1)}, then

|d(T (−0.1),T (−2))| = |d(T (−2),T (−0.1))| = 0.1; M(−0.1,−2) =M(−2,−0.1) = 1.9.

Case 3: If (x, y) = (−2,−2), then

|d(T (−2),T (−2))| = 0.1; M(−2,−2) = 2.

Clearly, T has CCP. Hence, all conditions of Theorem 3.1 are satisfied and T has a
unique fixed point 0.

Remark 3.3. Clearly, our theorem 3.1 generalizes the results due to Nazam et. al. [7],
Nazam et. al. [5], Oltra and Valero [11], and Valero [12] in the context of dualistic
partial metric space.

In the following remark, we highlight mathematical bugs that appear in some recent
papers ([3], [5], [4], and [9]) in the context of dualistic partial metric space.

Remark 3.4. Nazam et. al. [3] obtain a fixed point theorem using Dass-Gupta
contraction on the dualistic partial metric space. However, the following contractive
definition used in [3],

|d(T x,Ty)| ≤ |
αd(y,Ty)(1 + d(x,T x))

1 + d(x, y)
| + β|d(x, y)| for all x, y ∈ X;

is not valid in the case of d(x, y) = −1. Also, the contractive definition used in Theorem
3 of [5] is not well defined in case of d(x, y) = 0.

|d(T x,Ty)| ≤ |
a d(y,Ty)d(x,T x)

d(x, y)
| + b |d(x,T x)| + c |d(x, y)| for all x, y ∈ X.

In addition, we can also conclude that the above contractive condition does not make
any sense in the complete partial metric space p(x, y) = 0 and as well as in metric
space for x = y. So, Corollaries 5 and 6 of [5]are incorrect.

In the context of dualistic partial metric space, the contractive conditions utilized
in Bakhru et. al. [4]; and φ − ψ-contraction condition in Nazam and Arshad [9]:

φ(|d(T x,Ty)|) ≤ φ(M(x, y)) − ψ(M(x, y)), for all x, y ∈ X;

where,M(x, y) = max
{
|d(x, y)|, |

d(y,Ty)(1 + d(x,T x))
1 + d(x, y)

|

}
,

are also invalid for d(x, y) = −1.
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