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Abstract

In this paper the notion of quasi-isometry between two Riemannian manifolds has been introduced. This 
idea is also imposed to study quasi-isometry between two almost contact metric manifolds. Moving 
further, some curvature properties of two quasi-isometrically embedded almost contact metric manifolds, 
N(k)−contact metric manifolds and Sasakian manifolds are investigated. Next, an illustrative example 
of a quasi-isometry between two Sasakian structures is constructed. Finally, a relation between the 
scalar curvature and the quasi-isometric constants for two quasi-isometric Riemannian manifolds has 
been established.
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1. Introduction

The notion quasi-isometry was first introduced by the American mathematician G.D. 
Mostow [3] in 1973 and later it was Gromov [8] who studied quasi-isometry to a 
much further extent in the context of geometric group theory. But Mostow used the 
term pseudo-isometry and this notion was little bit different from the one that we
will be discussing here (See [1]). Let (X, dx) and (Y, dy) be two metric spaces and 
f : (X, dx) −→ (Y, dy) be a map. Then the map f is said to be an (L, C) quasi-isometric 
embedding, if there exist constants L ≥ 1 and C ≥ 0 such that for all p, q ∈ (X, dx)

1
L

dx(p, q) −C ≤ dy( f (p), f (q)) ≤ Ldx(p, q) + C. (1.1)

Moreover, if the quasi-isometric embedding f has a quasi dense image, i.e if there
is a constant D ≥ 0 such that ∀y ∈ Y , ∃x ∈ X for which dy( f (x), y) ≤ D, then the
map f is called a quasi isometry and we call that the two metric spaces (X, dx) and
(Y, dy) are quasi-isometric. For example, it can shown that the grid Z2 with the taxicab
metric is quasi-isometric to the planeR2 with the usual Euclidean metric via the natural
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inclusion map as a Quasi-isometry [4]. Also it is easy to see that any metric space of
finite diameter is quasi-isometric to a point. In that manner we can say that, all metric
spaces of finite diameter are same in the sense of quasi-isometry.

We say that a map f : X −→ Y has finite distance from a map g : X −→ Y if there
is a constant M ≥ 0 such that, for all x ∈ X we have dx(g(x), f (x)) ≤ M and f ∼ g if f
is at finite distance from g. Then it is easy to check that ′ ∼′ is an equivalence relation.
We denote QI(X) be the set of all quasi-isometries from X −→ X, and let QI(X)/ ∼ be
the set of all quasi isometries of X modulo finite distance. Moreover the composition
([ f ], [g]) 7→ [ f ◦ g] on the set of all equivalence classes QI(X) forms a group, called
the quasi-isometry group of X. It is a major problem in geometric group theory, to find
the quasi-isometry groups of spaces.

In geometric group theory the main idea is to see how groups can be viewed as
geometric objects. To be more precise on which geometric object can act as a group in
a ’nice way’ so that the interplay between the group and the space reveals the algebraic
properties of the group. In this direction one fundamental result is the Š varc-Milnor
lemma, which says that if a group G acts properly and co-compactly by isometries on
a non-empty proper geodesic metric space (X, d), then G is finitely generated and for
all x ∈ X the map

G −→ X

g 7→ g.x

is a quasi-isometry (a metric space is proper if all balls of finite radius are compact in
the metric topology and an action of a group G on a topological space X is co-compact
if the quotient space X/G is compact with respect to the quotient topology).

One of the central theorems in geometric group theory is Gromov’s polynomial
growth theorem (See [8]), which says that finitely generated groups have polynomial
growth if and only if they are virtually nilpotent (i.e if the group has a subgroup of
finite index that is nilpotent). Then using this theorem an interesting result can be
proved that, if a group G is quasi-isometric to Zn then G has a subgroup of finite index
which is isomorphic to Zn.

In Riemannian Geometry, two Riemannian manifolds (Mm1
1 , g1) and (Mm2

2 , g2)
are said to be isometric if there exists a diffeomorphism f : M1 → M2 such that
g2( f∗X, f∗Y) = g1(X,Y) for all X,Y ∈ χ(M1), where f∗ : χ(M1) → χ(M2) is the
differential of f , where χ(M1) and χ(M2) are set of all vector fields of M1 and M2
respectively. Such a map f is called isometry. This motivates us to define quasi-
isometry between two Riemannian manifolds.

Definition 1.1. Let (Mm1
1 , g1) and (Mm2

2 , g2) be two Riemannioan manifolds of respec-
tive dimensions m1 and m2. Let χ(M1) and χ(M2) be the set of all vector fields asso-
ciated to M1 and M2 respectively. A diffeomorphism f : Mm1

1 → Mm2
2 is said to be a

quasi-isometric embedding between M1 and M2 if there exist constants A ≥ 1, B ≥ 0
such that for all X,Y ∈ χ(M1),

1
A

g1(X,Y) − B ≤ g2( f∗(X), f∗(Y)) ≤ Ag1(X,Y) + B. (1.2)
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Moreover, if for all Z ∈ χ(M2) there exists X ∈ χ(M1) and a constant D ≥ 0 such that

g2(Z, f∗(X)) ≤ D, (1.3)

then f is called quasi-isometry between the manifolds M1 and M2.
The two manifolds M1 and M2 are called quasi-isometric if there exists such a quasi-
isometry f between M1 and M2.

The definition given in (1.1) is based on usual metric of the metric space whereas
in Definition 1.1 we have considered the Riemannian metric for the inequalities, which
is more generalized form than the usual metric d.

In this paper we have introduced the concept of quasi-isometry for almost contact
metric manifolds, for N(k)−contact metric manifolds and for Sasakian manifolds
of same dimensions and established some inequalities between two quasi-isometric
metric manifolds for various cases like when the ambient manifold is conformally flat,
concircularly flat, etc. We have given an example of a quasi-isometry between two
Sasakian manifolds. And finally we find a relationship between the scalar curvature
and the quasi-isometric constants for two Riemannian manifolds to be quasi-isometric.

2. Preliminaries

A contact manifold M2n+1 is a C∞ manifold together with a global 1-form η such
that η ∧ (dη)n , 0. More specifically, η ∧ (dη)n is a volume element on M, which is
non-zero everywhere on M2n+1 so that the manifold M is orientable.

Let M2n+1 be a (2n+1) dimensional manifold and let there exist a (1, 1) tensor field
φ, a vector field ξ and a global 1-form η on M such that

φ2 = −I + η ⊗ ξ, (2.1)
η(ξ) = 1, (2.2)

then we say that M has an almost contact structure (φ, ξ, η). And the manifold
M equipped with this almost contact structure (φ, ξ, η) is called an almost contact
manifold (See [2]).

Here the vector field ξ is called the characteristic vector field or Reeb vector field.

Proposition 2.1. [2] For an almost contact structure (φ, ξ, η) the following relations
hold:

φ ◦ ξ = 0, (2.3)
η ◦ φ = 0, (2.4)

Rankφ = 2n. (2.5)

Theorem 2.2. [2] Every almost contact structure (φ, ξ, η) on a manifold M2n+1 admits
a Riemannian metric g satisfying:

η(X) = g(X, ξ), (2.6)
g(φX, φY) = g(X,Y) − η(X)η(Y). (2.7)
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And the metric g is called compatible with the almost contact structure (φ, ξ, η)
and the manifold M2n+1 with the almost contact metric structure (φ, ξ, η, g) is called an
almost contact metric manifold.

In 1988, S. Tanno [5] introduced the notion of k−nullity distribution on a contact
metric manifold which is defined as follows: The k−nullity distribution of a Rieman-
nian manifold (M, g) for a real number k is a distribution,

N(k) : p −→ Np(k) = [Z ∈ TpM : R(X,Y)Z = k{g(Y,Z)X − g(X,Z)Y}], (2.8)

for any X,Y ∈ TpM, where R is the Riemannian curvature tensor and TpM denotes
the tangent vector space of M2n+1 at point p ∈ M.

If the characteristic vector field of a contact metric manifold belongs to the
k−nullity distribution, then the relation,

R(X,Y)ξ = k[η(Y)X − η(X)Y] (2.9)

holds. A contact metric manifold with ξ ∈ N(k) is called a N(k)−contact metric
manifold.

Proposition 2.3. [2] Let M2n+1(φ, ξ, η, g)(n ≥ 2) be a N(k)−contact metric manifold.
Then the following relations hold:

Qξ = (2nk)ξ, (2.10)
S (X, ξ) = 2nkη(X), (2.11)

η(R(X,Y)Z) = k[η(X)g(Y,Z) − η(Y)g(X,Z)], (2.12)

where, R is the Riemannian curvature tensor, S is the Ricci tensor of type (0, 2) and Q
is the Ricci operator or the symmetric endomorphism of the tangent space TpM at the
point p ∈ M and is given by S (X,Y) = g(QX,Y).

Next we recall a very important manifold named Sasakian manifold which was
introduced by the Japanese mathematician S. Sasaki [6] in the year 1960. Later, the
works of Boyer, Galicki [7] and other mathematicians have made a substantial progress
in the study of Sasakian manifolds. In mathematical physics Sasakian manifolds and
more specifically Sasakian space forms are widely used. Sasakian manifolds or normal
contact metric manifolds are an odd-dimensional counterpart of the Kähler manifolds
in complex geometry.

An almost contact manifold M2n+1 together with the almost contact structure
(φ, ξ, η) is said to be a Sasakian manifold or a normal contact metric manifold if

[φ, φ](X,Y) + 2dη(X,Y)ξ = 0,

where, [φ, φ] is the Nijenhuis torsion tensor field of φ and is given by,

[φ, φ](X,Y) = φ2[X,Y] + [φX, φY] − φ([φX,Y]) − φ([X, φY]).
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Theorem 2.4. An almost contact metric manifold M2n+1 with the structure (φ, ξ, η, g)
is Sasakian if and only if

(∇Xφ)Y = g(X,Y)ξ − η(Y)X,

where, ∇ is the Levi-Civita connection on M2n+1 (See [2]).

Proposition 2.5. [2] Let M2n+1 be a Sasakian manifold with the structure (φ, ξ, η, g),
then the following relations are true:

∇Xξ = −φX, (2.13)
R(X,Y)ξ = η(Y)X − η(X)Y, (2.14)
R(X, ξ)Y = η(Y)X − g(X,Y)ξ, (2.15)

η(R(X,Y)Z) = η(X)g(Y,Z) − η(Y)g(X,Z), (2.16)

where, R is the Riemannian curvature tensor of M2n+1 and is given by,

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z,

for all vector fields X,Y,Z on M.

The theorems and results that are stated above will be used frequently in proofs of
the next chapters. For a detailed discussion and proofs of these we refer to the text [2].

3. Quasi-isometry between two almost contact metric manifolds

Consider two odd dimensional almost contact metric manifolds M1 and M2 with
the structure (φ1, ξ1, η1, g1) and (φ1, ξ1, η1, g1) respectively. In this section, we study
quasi-isometry between two almost contact metric manifolds M1 and M2.

As in (1.2), for all X,Y ∈ χ(M1), we have,

1
A

g1(X,Y) − B ≤ g2( f∗(X), f∗(Y)) ≤ Ag1(X,Y) + B.

For Y = ξ1, we get using (2.6),

1
A
η1(X) − B ≤ g2( f∗(X), f∗(ξ1)) ≤ Aη1(X) + B.

If the function f∗ preserves the structure vector field between the two manifolds
M1 and M2, that is, if f∗(ξ1) = ξ2, then

g2( f∗(X), f∗(ξ1)) = g2( f∗(X), ξ2) = η2( f∗(X)),

so that,
1
A
η1(X) − B ≤ η2( f∗(X)) ≤ Aη1(X) + B, ∀X ∈ χ(M1). (3.1)

Since the tensor field φ is anti-symmetric with respect to the Riemannian metric g,
that is,

g(φX,Y) = −g(X, φY),
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we have,
g1(φ1X, X) = 0.

So, replacing X by φ1X, we get from (1.2),

1
A

g1(φ1X,Y) − B ≤ g2( f∗(φ1X), f∗(Y)) ≤ Ag1(φ1X,Y) + B.

Again for Y = X,

− B ≤ g2( f∗(φ1X), f∗(X)) ≤ B, ∀X ∈ χ(M1). (3.2)

Now replacing X by φ1X and Y by φ1Y we get from (1.2),

1
A

g1(φ1X, φ1Y) − B ≤ g2( f∗(φ1X), f∗(φ1Y)) ≤ Ag1(φ1X, φ1Y) + B.

The left inequality of the above implies

1
A

g1(X,Y) − B ≤ g2( f∗(φ1X), f∗(φ1Y)) +
1
A
η1(X)η1(Y). (3.3)

Similarly, the right inequality gives

g2( f∗(φ1X), f∗(φ1Y)) + Aη1(X)η1(Y) ≤ Ag1(X,Y) + B. (3.4)

Since A ≥ 1, we have

A ≥
1
A
. (3.5)

Using (3.5), from (3.3) and (3.4), we get for all X,Y ∈ χ(M1),

1
A

g1(X,Y) − B ≤ g2( f∗(φ1X), f∗(φ1Y)) +
1
A
η1(X)η1(Y) ≤ Ag1(X,Y) + B. (3.6)

Replacing X by φ1X and Y by φ1Y , the above implies

1
A

g1(X,Y) − B ≤ g2( f∗(φ1
2X), f∗(φ1

2Y)) +
1
A
η1(X)η1(Y) ≤ Ag1(X,Y) + B.

Now using the linearity of the differential f∗ and (2.1) and also if f∗ preserves the
structure vector field between the two manifolds, a simple calculation leads to

1
A

g1(X,Y) − B ≤ g2( f∗(X), f∗(Y)) − η1(X)g2(ξ2, f∗(Y))

−η1(Y)g2( f∗(X), ξ2) + η1(X)η1(Y)(g2(ξ2, ξ2) +
1
A

) ≤ Ag1(X,Y) + B,

which implies

1
A

g1(X,Y) − B ≤ g2( f∗(X), f∗(Y)) − η1(X)η2( f∗(Y))

−η1(Y)η2( f∗(X)) + η1(X)η1(Y)(1 +
1
A

) ≤ Ag1(X,Y) + B. (3.7)

So collecting all these results, we can state that:
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Theorem 3.1. Let M1(φ1, ξ1, η1, g1) and M2(φ2, ξ2, η2, g2) be two odd dimensional al-
most contact metric manifolds and let f : M1 → M2 be a quasi-isometric embedding. 
Also consider that f∗ preserves the structure vector field between the two manifolds. 
Then for all X, Y ∈ χ(M1), the following relations hold:

1. 1
Aη1(X) − B ≤ η2( f∗(X)) ≤ Aη1(X) + B,

2. −B ≤ g2( f∗(φ1X), f∗(X)) ≤ B,
3. 1

A g1(X,Y) − B ≤ g2( f∗(φ1X), f∗(φ1Y)) + 1
Aη1(X)η1(Y) ≤ Ag1(X,Y) + B,

4. 1
A g1(X,Y)−B ≤ g2( f∗(X), f∗(Y))−η1(X)η2( f∗(Y))−η1(Y)η2( f∗(X))+η1(X)η1(Y)(1+
1
A ) ≤ Ag1(X,Y) + B.

4. Quasi-isometry between two N(k)−contact metric manifolds

In this section we deal with the quasi-isometry between two N(k)− contact metric
manifolds in a similar way and establish some interesting results.

Recall that if a transformation does not change the angle between the tangent
vectors of a manifold, it is called a conformal transformation. The Weyl conformal
curvature tensor C of a Riemannian manifold (M, g) of dimension 2n + 1 (n ≥ 1) is an
invariant under any conformal transformation of the metric g and it is defined by

C(X,Y)Z = R(X,Y)Z − 1
(2n−1) [S (Y,Z)X − S (X,Z)Y + g(Y,Z)QX

−g(X,Z)QY] + r
2n(2n−1) [g(Y,Z)X − g(X,Z)Y], (4.1)

where R is Riemannian curvature tensor, S is the Ricci tensor of type (0, 2), Q is
the Ricci operator given by S (X,Y) = g(QX,Y), and r is the scalar curvature of the
manifold M.

Next, let the manifold M1 be conformally flat i.e; C1(X,Y)Z = 0 for all X,Y,Z ∈
χ(M1). Then from the equation (4.1) we get,

R1(X,Y)Z = 1
(2n−1) [S 1(Y,Z)X − S 1(X,Z)Y + g1(Y,Z)Q1X

−g1(X,Z)Q1Y] − r
2n(2n−1) [g1(Y,Z)X − g1(X,Z)Y]. (4.2)

Putting Z = ξ1 and using (2.8),(2.9) and the relation S 1(X, ξ1) = 2nkη1(X), we get after
some calculations

R1(X,Y)ξ1 =
2nk

r − 2nk
[η1(Y)Q1X − η1(X)Q1Y]. (4.3)

And for Y = ξ1,

Q1X = (
r − 2nk

2n
)X + [(2n + 1)k −

r
2n

]η1(X)ξ1. (4.4)

Now since R1(X,Y)Z ∈ χ(M1), for all X,Y,Z,W ∈ χ(M1), the left side inequality of
(1.2) implies

1
A

g1(R1(X,Y)Z,W) − B ≤ g2( f∗(R1(X,Y)Z), f∗(W)). (4.5)

167
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Using (4.2), the above inequality becomes

1
A [ 1

(2n−1) {S 1(Y,Z)g1(X,W) − S 1(X,Z)g1(Y,W) +

g1(Y,Z)g1(Q1X,W) − g1(X,Z)g1(Q1Y,W)} − r
2n(2n−1) {g1(Y,Z)

g1(X,W) − g1(X,Z)g1(Y,W)}] − B ≤ g2( f∗(R1(X,Y)Z), f∗(W)). (4.6)

For Z = ξ1, the above gives

1
A [ 1

(2n−1) {2nkη1(Y)g1(X,W) − 2nkη1(X)g1(Y,W)
+η1(Y)S 1(X,W) − η1(X), S 1(Y,W)} − r

2n(2n−1) {η1(Y)
g1(X,W) − η1(X)g1(Y,W)}] − B ≤ g2( f∗(R1(X,Y)ξ1), f∗(W)). (4.7)

Simplifying after some steps and assuming [ 1
(2n−1) (2nk − r

2n )] = l1 and 1
(2n−1) = l2 we

get

1
A [l1{η1(Y)g1(X,W) − η1(X)g1(Y,W)} + l2{η1(Y)S 1(X,W)
−η1(X)S 1(Y,W)}] − B ≤ g2( f∗(R1(X,Y)ξ1), f∗(W)). (4.8)

Setting Y = Z = ξ1 in (4.2), it can be shown that conformally flat N(k)− contact metric
manifold M1 becomes η-Einstein manifold, that is,

S 1(X,Y) = ag1(X,Y) + bη1(X)η1(Y),

where, a = [ r
2n − k] and b = [(2n + 1)k− r

2n ]. Then putting this value of S 1 in (4.8) and
after simplification we have

1
A [l1{η1(Y)g1(X,W) − η1(X)g1(Y,W)} + l2{η1(Y)(ag1(X,W)

+bη1(X)η1(W)) − η1(X)(ag1(Y,W) + bη1(Y)η1(W))}]
−B ≤ g2( f∗(R1(X,Y)ξ1), f∗(W)). (4.9)

Now, using (2.12) and observing that (l1 + al2) = k, the above inequality becomes

1
A
η1(R1(Y, X)W) − B ≤ g2( f∗(R1(X,Y)ξ1), f∗(W)). (4.10)

Reminding the linearity of f∗ and using the relation (2.9), the last inequality leads to

1
A
η1(R1(Y, X)W) − B ≤ k[η1(Y)g2( f∗(X), f∗(W)) − η1(X)g2( f∗(Y), f∗(W))]. (4.11)

Similarly, taking the right side inequality of the (1.2) and proceeding as above we get

k[η1(Y)g2( f∗(X), f∗(W)) − η1(X)g2( f∗(Y), f∗(W))] ≤ Aη1(R1(Y, X)W)] + B. (4.12)

So, combining the inequalities (4.11) and (4.12), we can write

Theorem 4.1. Let M1(φ1, ξ1, η1, g1) and M2(φ2, ξ2, η2, g2) be two odd dimensional
N(k)−contact metric manifolds with dim M1 = 2n + 1 (n > 1). Suppose f : M1 → M2
be a quasi-isometric embedding with the constants A ≥ 1, B ≥ 0. Furthermore, if



Quasi-isometry between two almost contact metric manifolds 169

the manifold M1 is conformally flat, then for all X,Y,W ∈ χ(M1), the metric g2 of the
manifold M2 satisfies

1
A
η1(R1(Y, X)W) − B ≤ k[η1(Y)g2( f∗(X), f∗(W))

−η1(X)g2( f∗(Y), f∗(W))] ≤ Aη1(R1(Y, X)W)] + B, (4.13)

where R1 is the Riemannian curvature tensor of the manifold M1.

Remark 4.2. Now consider f is a quasi-isometry between M1 and M2. Also consider
f∗(X) = Z1 and f∗(Y) = Z2. Then there exists some W ∈ χ(M1) such that
g2(Z1, f∗(W)) ≤ D and g2(Z2, f∗(W)) ≤ D, where D ≥ 0. So from (4.11), we get

1
A
η1(R1(Y, X)W) − B ≤ kDη1(Y − X).

After a small calculation we can remark that,

R1(Y, X)W ≤ A(Bξ1 + kD(Y − X)).

The following corollary can also be demonstrated:

Corollary 4.3. Let f be a quasi-isometric embedding between two N(k)− contact
metric manifolds M1(φ1, ξ1, η1, g1) and M2(φ2, ξ2, η2, g2) with M1 conformally flat. If
f∗ preserves the structure vector field, then for some A ≥ 1 and B1 ≥ 0 we have

− B1 ≤ η1(Y)g2( f∗(X), ξ2) − η1(X)g2( f∗(Y), ξ2) ≤ B1. (4.14)

Proof. The proof of this corollary follows from the equation (4.13) after putting
W = ξ1 and using (2.9). �

Next, we consider the manifold M1 to be conformally flat Einstein manifold, then
its Ricci tensor S 1 satisfies S 1(X,Y) = r

2n+1 g1(X,Y). Now using this in (4.8) we get

1
A

[l1{η1(Y)g1(X,W) − η1(X)g1(Y,W)} + l2
r

2n + 1
{η1(Y)g1(X,W)

−η1(X)g1(Y,W)}] − B ≤ g2( f∗(R1(X,Y)ξ1), f∗(W)). (4.15)

Then after simplification this yields

1
Ak

(l1 +
r

2n + 1
l2)η1(R1(Y, X)W) − B ≤ g2( f∗(R1(X,Y)ξ1), f∗(W)).

Now considering a1 = 1
k (l1 + r

2n+1 l2) = 1
k(2n−1) (2nk − r

2n + r
2n+1 ), the above inequality

transforms into
a1

A
η1((R1(Y, X)W)) − B ≤ g2( f∗(R1(X,Y)ξ1), f∗(W)).

Applying the linearity of f∗ the last inequality becomes
a1
A η1((R1(Y, X)W)) − B ≤ k[η1(Y)g2( f∗(X), f∗(W))

−η1(X)g2( f∗(Y), f∗(W))]. (4.16)
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Again proceeding similarly with the right side inequality, we have

k[η1(Y)g2( f∗(X), f∗(W)) − η1(X)g2( f∗(Y), f∗(W))]
≤ a1Aη1((R1(Y, X)W)) + B. (4.17)

Hence, from (4.16) and (4.17), we can state the following corollary

Corollary 4.4. Let f be a quasi-isometric embedding between two N(k)− contact
metric manifolds M1(φ1, ξ1, η1, g1) and M2(φ2, ξ2, η2, g2). Moreover, if the manifold
M1 be conformally flat Einstein manifold, then for some A ≥ 1, B ≥ 0 and for all
X,Y,W ∈ χ(M1) the metric g2 of M2 satisfies

a1
A η1((R1(Y, X)W)) − B ≤ k[η1(Y)g2( f∗(X), f∗(W))
−η1(X)g2( f∗(Y), f∗(W))] ≤ a1Aη1((R1(Y, X)W)) + B, (4.18)

where R1 is the Riemannian curvature tensor of the manifold M1 and a1 = 1
k(2n−1) (2nk−

r
2n + r

2n+1 ).

The concircular curvature tensor of a manifold (M2n+1, g) is given by

C̄(X,Y)Z = R(X,Y)Z −
r

2n(2n + 1)
[g(Y,Z)X − g(X,Z)Y].

Now, if our ambient manifold M1 be concircularly flat i.e C̄(X,Y)Z = 0, then from
above we have

R1(X,Y)Z =
r

2n(2n + 1)
[g(Y,Z)X − g(X,Z)Y].

Putting this value in the left inequality of (1.2), we get
r

2An(2n+1) [g1(Y,Z)g1(X,W) − g1(X,Z)g1(Y,W)]
−B ≤ g2( f∗(R1(X,Y)Z), f∗(W)).

Then for Z = ξ1 and using (2.6), (2.12) with the linearity of f∗ and simplifying we
have

b1

A
η1(R1(Y, X)W) − B ≤ k[η1(Y)g2( f∗(X), f∗(W)) − η1(X)g2( f∗(Y), f∗(W))], (4.19)

with b1 = r
2nk(2n+1) .

Again proceeding similarly as above, from the right side inequality of (1.2), we have

k[η1(Y)g2( f∗(X), f∗(W)) − η1(X)g2( f∗(Y), f∗(W))] ≤ b1Aη1(R1(Y, X)W) + B. (4.20)

So, combining (4.19) and (4.20) we get

Theorem 4.5. Let M1(φ1, ξ1, η1, g1) and M2(φ2, ξ2, η2, g2) be two N(k)− contact metric
manifolds with dim M1 = 2n + 1 (n ≥ 1). Suppose f : M1 → M2 be a quasi-isometric
embedding with the constants A ≥ 1, B ≥ 0. Moreover, if M1 is concircularly flat, then
for all X,Y,W ∈ χ(M1) we have

b1
A η1(R1(Y, X)W) − B ≤ k[η1(Y)g2( f∗(X), f∗(W))
−η1(X)g2( f∗(Y), f∗(W))] ≤ b1Aη1(R1(Y, X)W) + B, (4.21)

where b1 = r
2nk(2n+1) .
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We have the conharmonic curvature tensor for a manifold (M2n+1, g) given by,

C̃(X,Y)Z = R(X,Y)Z − 1
(2n−1) [S (Y,Z)X − S (X,Z)Y

+g(Y,Z)QX − g(X,Z)QY],

where Q is the Ricci operator and is given by g(QX,Y) = S (X,Y). Now consider the
manifold M1 conharmonically flat i.e C̃(X,Y)Z = 0. Then using the value of R1(X,Y)Z
from above, we get from the left side inequality of (1.2),

l2
A [S 1(Y,Z)g1(X,W) − S 1(X,Z)g1(Y,W) + g1(Y,Z)g1(Q1X,W)
−g1(X,Z)g1(Q1Y,W)] − B ≤ g2( f∗(R1(X,Y)Z), f∗(W)).

Then putting Z = ξ1 and using (2.6), g1(X, ξ) = 2nkη1(X) and S 1(Q1X,Y) = S 1(X,Y),
we get

l2
A [2nk{η1(Y)g1(X,W) − η1(X)g1(Y,W)} + [η1(Y)S 1(X,W)
−η1(X)S 1(Y,W)]] − B ≤ g2( f∗(R1(X,Y)ξ1), f∗(W)).

Moreover if M1 is an Einstein manifold, then the above inequality becomes

l2
A (2nk + r

2n+1 )[η1(Y)g1(X,W) − η1(X)g1(Y,W)]
−B ≤ g2( f∗(R1(X,Y)ξ1), f∗(W)).

Finally, using (2.12) and the linearity of f∗, the above yields

c1

A
η1(R1(Y, X)W) − B ≤ k[η1(Y)g2( f∗(X), f∗(W)) − η1(X)g2( f∗(Y), f∗(W))]. (4.22)

where, c1 = l2
k (2nk + r

2n+1 ).
Similarly the right inequality of (1.2) gives

k[η1(Y)g2( f∗(X), f∗(W)) − η1(X)g2( f∗(Y), f∗(W))] ≤ c1Aη1(R1(Y, X)W) + B. (4.23)

Therefore from the inequalities (4.22) and (4.23) we can state

Theorem 4.6. Let M1(φ1, ξ1, η1, g1) and M2(φ2, ξ2, η2, g2) be two N(k)− contact metric
manifolds with dim M1 = 2n + 1 (n ≥ 1). Suppose f : M1 → M2 be the
quasi-isometric embedding. Furthermore, if the manifold M1 is conharmonically flat
Einstein manifold, then for all X,Y,W ∈ χ(M1), the metric g2 of the manifold M2

satisfies:

c1

A
η1(R1(Y, X)W) − B ≤ k[η1(Y)g2( f∗(X), f∗(W))

−η1(X)g2( f∗(Y), f∗(W))] ≤ c1Aη1(R1(Y, X)W) + B, (4.24)

where, c1 = l2
k (2nk + r

2n+1 ) = 4n
2n−1 , since we have k = r

2n(2n−1) for N(k)− contact
Einstein manifolds.
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Recall that the Weyl projective curvature tensor P of type (1, 3) on a Riemannian
manifold (M2n+1, g) can be defined as

P(X,Y)Z = R(X,Y)Z −
1
2n

[S (Y,Z)X − S (X,Z)Y].

In a similar calculation, if M1 is projectively flat N(k)−contact Einstein manifold, i.e.
if P1 = 0 and S 1(X,Y) = r

2n+1 g1(X,Y), then we write

Theorem 4.7. Let M1(φ1, ξ1, η1, g1) and M2(φ2, ξ2, η2, g2) be two quasi- isometrically
embedded N(k)−contact metric manifolds with dim M1 = 2n + 1) (n ≥ 1). Suppose
f M1 → M2 be such embedding between M1 and M2 with the constants A ≥ 1, B ≥ 0.
Furthermore, if the manifold M1 is projectively flat Einstein manifold, then we have

1
A
η1(R1(Y, X)W) − B ≤ k[η1(Y)g2( f∗(X), f∗(W))

−η1(X)g2( f∗(Y), f∗(W))] ≤ Aη1(R1(Y, X)W) + B. (4.25)

5. Quasi-isometry between two Sasakian manifolds

Some basic introductory details about the Sasakian manifold is given in the
preliminary section. Now we recall an important theorem to establish the rest of the
results.

Theorem 5.1. [2] A N(k)−contact metric manifold is Sasakian if and only if k = 1.

Using this theorem we can imply the following result from the previous results for
N(k)−contact metric manifold.

Theorem 5.2. Let M1(φ1, ξ1, η1, g1) and M2(φ2, ξ2, η2, g2) be two Sasakian manifolds
with dimension of M1 = 2n + 1 (n ≥ 1). Let f : M1 → M2 be a quasi-isometry
embedding between M1 and M2 with constants A ≥ 1, B ≥ 0. Then the following
inequalities hold in the respective following cases:

1. If M1 is conformally flat or conformally flat Einstein or concircularly flat or
projectively flat manifold, then

1
A
η1(R1(Y, X)W) − B ≤ η1(Y)g2( f∗(X), f∗(W))

−η1(X)g2( f∗(Y), f∗(W)) ≤ Aη1(R1(Y, X)W) + B. (5.1)

2. If M1 is conharmonically flat Einstein manifold, then

c1

A
η1(R1(Y, X)W) − B ≤ η1(Y)g2( f∗(X), f∗(W))

−η1(X)g2( f∗(Y), f∗(W)) ≤ c1Aη1(R1(Y, X)W) + B, (5.2)

where c1 = 4n
2n−1 .
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Example: Consider M1 = R3 with the Euclidean metric g1. Let α = 1
2 (dz − ydx),

ξ = ∂
∂z and g1 = α ⊗ α + 1

4 (dx2 + dy2). Then we take e1 = ∂
∂x , e2 = ∂

∂y and e3 = ∂
∂z

as a set of linearly independent basis vectors for the set of vector fields χ(M1) of the
manifold M1. Also consider the (1, 1) tensor field φ be given as, φ1( ∂

∂x ) = ∂
∂y + x ∂

∂z ,
φ1( ∂

∂y ) = − ∂
∂x and φ1( ∂

∂z ) = 0. Then it can be easily checked that the manifold (M1, g1)
with the above defined structure is a Sasakian manifold.

Take another manifold M2 ={(x, y, z) ∈ R3 : 1 < y < 2, z , 0}, where (x, y, z) are
the standard co-ordinates of R3. Then the linearly independent vector fields are given
by f1 = ∂

∂y , f2 = z2( ∂
∂z + 2y ∂

∂x ) and f3 = ∂
∂x . Let g2 be the Riemannian metric defined

by: gi j = 1 for i = j and gi j = 0 for i , j. Let φ be the (1, 1) tensor field defined by;
φ2( f1) = f3, φ2( f2) = 0 and φ2( f3) = − f1. Thus for taking ξ = f2, we can show that the
manifold (M2, g2) with this structure is a Sasakian manifold.

Now we define a map f∗ : χ(M1) −→ χ(M2) on the basis vector fields by,

f∗(e1) =
1
2

(y f3 +
1
√

y
f1), f∗(e2) =

1
2

f2, f∗(e3) = −
1
2

f3.

The f is a quasi-isometry between the two Sasakian manifolds M1 and M2 with the
constants A = 2 and B = 1.

6. Quasi-isometric inequality between two Riemannian manifolds

We will conclude this article with the following result. This theorem concerns
between any two Riemannian manifold which have a quasi-isometric structure among
them.

Theorem 6.1. Let (M1, g1) and (M2, g2) be two Riemannian manifolds of same dimen-
sion n and let f be the quasi-isometric embedding between them with some constants
A ≥ 1 and B ≥ 0. Then

r1

A
− n2B ≤ g2( f∗(R1(ei, e j)e j), f∗(ei)) ≤ Ar1 + n2B,

r1 being the scalar curvature of the manifold M1.

Proof. For all X, Y , Z and W in χ(M1), R1(X,Y)Z is also in χ(M1) and for f being the
quasi-isometry between M1 and M2, we get

1
A

g1(R1(X,Y)Z,W) − B ≤ g2( f∗(R1(X,Y)Z), f∗(W))

≤ Ag1(R1(X,Y)Z,W) + B. (6.1)

Let {ei} be an orthonormal basis of the tangent space Tp(M1) at p ∈ M1. Then for
X = W = ei, we get from the left inequality of (6.1),

1
A

S 1(Y,Z) − nB ≤ g2( f∗(R1(ei,Y)Z), f∗(ei)).
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Again putting Y = Z = e j we get

1
A

r − n2B ≤ g2( f∗(R1(ei, e j)e j), f∗(ei)). (6.2)

Similarly, right inequality gives

g2( f∗(R1(ei, e j)e j), f∗(ei)) ≤ Ar1 + n2B. (6.3)

Finally (6.2) and (6.3) together complete the proof. �
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