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ON SOME TRINOMIALS IN CHARACTERISTIC 2

ZHIGUO DING ) and MICHAEL E. ZIEVE

Abstract

For each q of the form 4k, we determine which of five trinomials permute Fq. Our result corrects the 
results of a recent paper by Sharma, Gupta, and Kumar.
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1. Introduction

For any prime power q, a polynomial f (X) ∈ Fq[X] is called a permutation polynomial 
if the associated function f : c → f (c) from Fq to itself is bijective. The recent paper 
[4] includes five theorems, each of which asserts that certain polynomials permute F4k 

for either all k, all odd k, or all k not divisible by 4. In this note we show that these 
theorems are false, and that in fact none of the polynomials in these theorems permute 
F4k for any k > 2. To do this, we introduce a general procedure relying on simple 
computer calculations.

We now describe the polynomials in question. Write

B1(X) ··= X5 + X2 + 1;

B2(X) ··= X5 + X3 + 1;

B3(X) ··= X3 + X + 1.

The polynomials addressed in [4] are as follows, where q ··= 2k:

f1(X) ··= X5B1(Xq−1);

f2(X) ··= X5B2(Xq−1);

f3(X) ··= X6B1(Xq−1);

f4(X) ··= X4B2(Xq−1);

f5(X) ··= X5B3(Xq−1).

The following result is the combination of Theorems 3.1–3.5 of [4].
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Theorem 1.1. Write q = 2k where k is a positive integer, and pick i ∈ {1, 2, 3, 4, 5}.
Then fi(X) permutes Fq2 if and only if one of the following holds:
• i ∈ {1, 2, 5} and 4 - k;
• i = 3 and 2 - k;
• i = 4.

However, Theorem 1.1 is not true. In this paper we prove the following result,
which determines when fi(X) permutes Fq2 .

Theorem 1.2. Write q = 2k where k is a positive integer, and pick i ∈ {1, 2, 3, 4, 5}.
Then fi(X) permutes Fq2 if and only if one of the following holds:
• i ∈ {1, 2} and k ∈ {1, 2};
• i ∈ {4, 5} and k = 2.

We emphasize that Theorem 1.2 goes far beyond merely disproving the results of
[4]. For instance, to disprove Theorem 1.1, it suffices to observe that if q = 2 then
all three elements c ∈ F∗q2 satisfy f3(c) = 1. In order to prove Theorem 1.2, one must
address all values k, rather than just a single k, and in fact the proof of Theorem 1.2
relies on some nontrivial tools from Galois theory and algebraic geometry.

2. Background material

In this section, we recall some previous results which are used in our proof of
Theorem 1.2.

We use the following notation throughout this paper:
• q is a prime power;
• Fq is an algebraic closure of Fq;
• P1(Fq) ··= Fq ∪ {∞};
• µq+1 is the set of (q + 1)-th roots of unity in F∗q2 .

We begin with the following special case of [5, Lemma 2.1].

Lemma 2.1. Write f (X) ··= XrB(Xq−1) where q is a prime power, r is a positive integer,
and B(X) ∈ Fq2 [X]. Then f (X) permutes Fq2 if and only if gcd(r, q − 1) = 1 and
g0(X) ··= XrB(X)q−1 permutes µq+1.

The next result gives a useful reformulation of the condition in Lemma 2.1 that
g0(X) permutes µq+1. This type of reformulation first appeared in [6].

Lemma 2.2. For any integer r and any B(X) ∈ Fq[X] such that B(X) and B(1/X) have
no common zeroes in µq+1, the function g0(X) ··= XrB(X)q−1 permutes µq+1 if and only
if g(X) ··= XrB(1/X)/B(X) permutes µq+1.

Proof. Since B(X) ∈ Fq[X], we have B(X)q = B(Xq). Thus, each c ∈ µq+1 satisfies
B(c)q = B(cq) = B(1/c), so we must have B(c) , 0, since otherwise c would be a
common zero of B(X) and B(1/X). Hence g0(X) and g(X) induce the same function on
µq+1, which implies the result. �
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Definition 2.3. For any field K and any nonzero f (X) ∈ K(X), by the numerator
and denominator of f (X) we mean the unique coprime N(X),D(X) ∈ K[X] such
that D(X) is monic and f (X) = N(X)/D(X), and then the degree of f (X) ∈ K(X)
is max(deg(N), deg(D)).

The next result is a special case of [6, Lemma 3.1].

Lemma 2.4. For any prime power q, and any c ∈ Fq2 \ Fq, the degree-one rational
function ρ(X) ··= (cX − cq)/(X − 1) induces a bijection from µq+1 to P1(Fq).

The next result is well-known; for instance, cf. [2, Cor. 2.8].

Lemma 2.5. For any field K and any degree-one ρ(X) ∈ K(X), there is a unique degree-
one ρ−1(X) ∈ K(X) such that ρ−1◦ρ = X = ρ◦ρ−1. Explicitly, if ρ(X) = (aX+b)/(cX+d)
then ρ−1(X) = (dX − b)/(−cX + a).

Definition 2.6. A polynomial H(X,Y) ∈ Fq[X,Y] is called absolutely irreducible if
H(X,Y) is irreducible in Fq[X,Y].

Definition 2.7. A rational function f (X) ∈ Fq(X) is exceptional over Fq if the
only absolutely irreducible polynomials in Fq[X,Y] which divide the numerator of
f (X) − f (Y) are the polynomials c · (X − Y) with c ∈ F∗q.

Definition 2.8. A rational function f (X) ∈ Fq(X) is separable if f (X) < Fq(Xp), where
p is the characteristic of Fq.

The following result is a special case of [3, Thm. 2.5].

Lemma 2.9. Let q be a prime power, and let n ≥ 2 be an integer such that
√

q >
2(n − 2)2 + 1. If f (X) ∈ Fq(X) is a separable rational function of degree n which
permutes P1(Fq), then f (X) is exceptional over Fq.

3. Proof of Theorem 1.2

It is routine to verify the result via computer when k < 11, so in what follows we
assume k ≥ 11. Writing q ··= 2k, we must show that each fi(X) does not permute Fq2 .
In order to obtain a contradiction, assume that i has been chosen so that fi(X) permutes
Fq2 .

Pick w ∈ Fq such that wq = w + 1. Note that then w ∈ Fq2 \ Fq. Write
ρ(X) ··= (wX + wq)/(X + 1) and ρ−1(X) ··= (X + wq)/(X + w). By Lemmas 2.4 and
2.5, ρ(X) induces a bijection from µq+1 to P1(Fq) whose inverse is induced by ρ−1(X).
By definition, fi(X) = XrB j(Xq−1) for some r ∈ {4, 5, 6} and some j ∈ {1, 2, 3}. Write
gi(X) ··= XrB j(1/X)/B j(X), and write hi(X) ··= ρ(X) ◦ gi(X) ◦ ρ−1(X).

We now show that hi(X) permutes P1(Fq). To this end, we first show that B j(X) and
B j(1/X) have no common zeroes in F

∗

q. We have B3(X) + X3B3(1/X) = X2 + X, and if
j ∈ {1, 2} then B j(X) + X5B j(1/X) = X3 + X2. Thus, regardless of the value of j, since
B j(1) = 1 , 0 it follows that B j(X) and B j(1/X) have no common zeroes in F

∗

q. Since
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B j(X) ∈ Fq[X] and fi(X) permutes Fq2 , Lemmas 2.1 and 2.2 imply that gi(X) permutes
µq+1, so that hi(X) permutes P1(Fq).

We have

g1(X) ··=
X5 + X3 + 1
X5 + X2 + 1

=
1

g2(X)
,

g3(X) ··=
X6 + X4 + X
X5 + X2 + 1

=
1

g4(X)
,

g5(X) ··=
X5 + X4 + X2

X3 + X + 1
.

Since B j(X) and B j(1/X) have no common zeroes in F
∗

q, the polynomials displayed
above whose ratio is gi(X) are in fact the numerator and denominator of gi(X). In
particular, we have deg(hi) = deg(gi) ∈ {5, 6}, and by inspection we see that gi(X) is
separable, which implies that hi(X) is separable as well.

Next we show that hi(X) is in Fq(X). To this end, note that v ··= w2 + w is in Fq,
since v = w(w + 1) so that vq = wq(wq + 1) = (w + 1)w = v. Now a simple computation
shows that hi(X) ∈ F2(v)(X), so that hi(X) ∈ Fq(X). This computation can be done by
hand, or by the following program using the computer algebra package Magma [1].

K<w>:=FunctionField(GF(2));
wq:=w+1;
v:=w^2+w;
_<x>:=FunctionField(K);
rho:=(w*x+wq)/(x+1);
rhoinv:=(x+wq)/(x+w);
H:={0,1,v,v+1,v^2,v^2+1,v^2+v,v^2+v+1,v^3,v^3+v+1};
for g in [(x^5+x^3+1)/(x^5+x^2+1), (x^5+x^2+1)/(x^5+x^3+1),

(x^6+x^4+x)/(x^5+x^2+1), (x^5+x^2+1)/(x^6+x^4+x),
(x^5+x^4+x^2)/(x^3+x+1)]

do h:=Evaluate(rho,Evaluate(g,rhoinv));
{i in H: i in Coefficients(Numerator(h)) cat

Coefficients(Denominator(h))};
end for;

We have shown that hi(X) is a separable rational function in Fq(X) of degree n,
where n ∈ {5, 6}, and that hi(X) permutes P1(Fq). Since q = 2k with k ≥ 11,
Lemma 2.9 implies that hi(X) is exceptional over Fq. Since n > 2, it follows that
the numerator of (hi(X) − hi(Y))/(X − Y) is not absolutely irreducible. Thus the
numerator of (gi(X) − gi(Y))/(X − Y) also cannot be irreducible in Fq[X,Y]. However,
this contradicts the output of the following Magma program, which shows that the
numerator of (gi(X)−gi(Y))/(X−Y) is an absolutely irreducible polynomial in F2[X,Y].

P<x,y>:=AffineSpace(GF(2),2);
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for g in [(x^5+x^3+1)/(x^5+x^2+1), (x^6+x^4+x)/(x^5+x^2+1),
(x^5+x^4+x^2)/(x^3+x+1)] do

g2:=(g-Evaluate(g,[y,y]))/(x-y);
IsAbsolutelyIrreducible(Curve(P,Numerator(g2)));

end for;

This contradiction concludes the proof of Theorem 1.2.

Remark 3.1. Our proof of Theorem 1.2 relies on two Magma programs. If one
preferred, one could replace these programs with theoretical arguments. However,
such arguments would require significantly more space than the short proof in the
present paper, and also would require introducing additional concepts and background
results.

Author contributions:
Conceptualisation: Z. Ding, M. E. Zieve ; Software: M. E. Zieve ; Writing-Original
Draft: Z. Ding, M. E. Zieve

Conflicts of Interest: The authors declare no conflict of interest.

References
[1] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J.

Symbolic Comput. 24 (1997) 235–265.
[2] Z. Ding and M. E. Zieve, Low-degree permutation rational functions over finite fields, Acta Arith.

202 (2022) 253–280.
[3] R. M. Guralnick, T. J. Tucker, and M. E. Zieve, Exceptional covers and bijections on rational

points, Int. Math. Res. Notices 2007 (2007) Art. ID rnm004, 20 pp.
[4] P. L. Sharma, S. Gupta, and S. Kumar, Some new classes of permutation trinomials over F22m ,

GANITA 73 (2023) 141–147.
[5] M. E. Zieve, Some families of permutation polynomials over finite fields, Int. J. Number Theory 4

(2008) 851–857.
[6] M. E. Zieve, Permutation polynomials on Fq induced from Rédei function bijections on subgroups

of F∗q, arXiv:1310.0776v2, 7 Oct 2013.

Zhiguo Ding, School of Mathematics and Statistics, Central South University, Chang-
sha, 410075 China
e-mail: ding8191@csu.edu.cn

Michael E. Zieve, Department of Mathematics, University of Michigan, 530 Church
Street, Ann Arbor, MI 48109-1043 USA
e-mail: zieve@umich.edu




