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MODELLING THE USE OF TECHNOLOGY TO IMPROVE
DEGRADED LAND AND BIOMASS DENSITY
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Abstract

Land degradation occurs when land loses its natural productivity due to various human activities and
natural hazards. It eventually leads to a decrease in biomass density. This paper proposes nonlinear
mathematical models to study the increase in biomass density by using technology to improve degraded
land. The models have four variables, namely, the biomass density, the degraded land area, the fertile land
area and the technology to improve degraded land. Two types of technological efforts are considered: (I)
linearly varying with degraded land, (II) logistically varying with degraded land. The stability theory
of differential equations is used to analyze these models. The local & global stability of the non-trivial
equilibrium points have been studied by using suitable Lyapunov functions. In both the cases, analysis
shows that as the technology increases the degraded land becomes fertile, leading to an increase in the
biomass density. The results are confirmed using numerical simulation. The comparative analysis of
the effect of doubling vital parameters on the state variables has been examined using a basic sensitivity
analysis corresponding to the differential equations in the models.

2010 Mathematics subject classification: primary 34A34; secondary 34D23.
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1. Introduction

Land degradation is the process in which both biotic and abiotic population is tremen-
dously affected by the direct and indirect impact of human activities on the land. Var-
ious factors are responsible for land degradation like wind, storm, drought, acid rain,
flood, water, pollution, mechanical erosion, excessive use of chemicals in agricultural
activities, mining, road construction etc. Important forms of land degradation are arid-
ity and salinization of soil. The most affected countries by degraded land are India,
China, Argentina, Russia, Brazil, the United States, and Australia. Better management
is needed for the world’s arable systems to combat multidimensional land degradation
[1]. India suffers the loss of 0.8 mt of nitrogen (N), 26.3 mt of potassium (K) and 1.8
mt of phosphorous (P) every year. As per data available from ICAR (Indian Council
of Agricultural Research) and NAAS (National Academy of Agricultural Sciences),
about 120.72 million hectares (MHA) of land is degraded every year. In India, states
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like Telangana, M.P.,, Jammu & Kashmir, Odisha, Maharashtra, Jharkhand, Gujarat,
Karnataka and Rajasthan which are affected by it [2]. There is a decrease in Earth’s
resources due to deforestation, agriculture depletion, overgrazing, and quarrying of
sand, stone, ore and minerals. Continuous deforestation also leads to soil erosion and
the formation of barren lands. Doon Valley in India is an example of a situation occur-
ring due to limestone quarriers and industrialization. To overcome, the consequences
of deforestation and industrialization, reforestation is recommended which is capable
of improving the resource biomass [3—6]. The emission of primary and secondary
toxicants also affect the density of forest resources and soil fertility [7].

Various technological efforts like genetically engineered plants and sustainable har-

vesting techniques are adopted to conserve resources [8—10, 23, 24]. Soil fertility is
maintained by adding N and P individually or their combination in soil and main-
taining the moisture in soil. There is a need to conserve soil organic matter as well
as water [11]. Land degradation can be reversed or degraded land can be improved
by adding required nutrients to soil, buffering soil acidity, rebuilding topsoil, desalin-
ization, adopting various technologies like green manuring, use of local products as
sources of rock phosphate and lime, employing techniques for improving irrigation
and water harvesting [12, 23]. This can be done through increasing awareness among
society and employing more technological efforts. In Central Asia, endorsement of
sustainable land management technologies like improving irrigation technology, laser
land leveling, zero tillage, mulching, crop diversification with legumes, use of phosph-
ogypsum for sodic soils, use of fertilizers, planting halophytic plants, strip cropping,
drip irrigation and terracing are seen to have positive impact [13, 14]. In India, various
policies are adopted to improve ecological and agricultural growth like Green India
Mission 2015, Pradhan Mantri Krishi Sinchayee Yojana (PMKSY) 2015, Soil Health
Card Scheme 2015, Neem Coated Urea Scheme, National Project on Organic Farming
Scheme 2004, etc [2].
The drop-off of forest assets caused by growing population, industrial society, pollu-
tion leading to soil erosion, top-soil depletion and soil acidification have been studied
by many researchers [3-6, 8, 10, 15]. The consequences of wind and rainwater on
fertile topsoil are studied by B. Dubey [16, 17]. Some recent contributions in this area
are the ecological mathematical models proposed Ivanyo et al. and Apazhev et al.
First one is to optimize agricultural and livestock production, taking into account soil
degradation in rain-fed and irrigated areas by reducing losses in extreme condition and
minimizing the environmental damage during the cultivation [18]. Another is to use
reclaimed land by maintaining the groundwater level, the salinity of the soil, the qual-
ity of irrigation water, etc [19]. In this study, our objective is to propose and analyse
models to increase the fertile land that is re-obtained from degraded land by applying
technology. As the fertile land increases, there is an increase in biomass production.

1.1. Comparison with Previous Models Mathematical modeling has been widely
used to understand land degradation, biomass growth, and environmental resource
management. Several ecological models have attempted to study the impact of soil
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degradation on agricultural productivity and biomass density. However, our proposed
models introduce technological interventions as a dynamic variable, which is a novel
approach. Below, we compare our work with key previous studies:

1. Ivanyo et al. (2022) developed a model to optimize agricultural and livestock
production by minimizing environmental damage. However, their study focused
on soil degradation in extreme conditions without explicitly incorporating the
role of technology in land restoration [18].

2. Apazhev et al. (2019) proposed models for reclaimed land, accounting for
groundwater levels, soil salinity, and irrigation quality. While these factors are
crucial, their model did not explore the direct effects of technological advance-
ments in land rehabilitation [19].

3. Dubey investigated the impact of wind and rainwater on topsoil degradation but
did not propose an active restoration mechanism [16, 17].

4.  Yasin Rustamov et al. have proposed a mathematical model states various fac-
tors like water, nutrients, humus in appropriate proportion responsible for soil’s
fertility [25].

5. A mathematical model by Sapna Devi et al. investigated the impact of fertilizer,
earthworms on increasing the fertility of soil to increase in agricultural produc-
tion [22].

6.  Our work extends these studies by introducing technology as a control mecha-
nism to reverse land degradation and improve biomass density. Unlike previous
models, we examine two different technological growth patterns (linear and lo-
gistic) and their stability using Lyapunov functions.

Our approach fills an important research gap by providing a dynamic framework
to analyze the role of technological interventions in land restoration and biomass
improvement. The numerical simulations and sensitivity analyses further validate the
effectiveness of these technological strategies.

2. Notation and Assumption

To develop a mathematical model for analyzing the impact of technology on
improving degraded land and biomass density, we define the following variables and
parameters:

2.1. Notation
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Symbol  Description

B(r) Biomass density at time t

Li(t) Area of degraded land at time t

Ly(1) Area of fertile land at time t

T(r) Technological efforts applied at time t

s Intrinsic growth rate of biomass

L Carrying capacity of biomass

S Growth rate of biomass due to fertile land

S2 Contribution to carrying capacity of biomass due to fertile land
S0 Natural depletion coefficient of biomass

0 Constant rate of increase in degraded land

0o Natural depletion coeflicient of degraded land

01 Depletion rate coeflicient of degraded land due to technology

% Conversion rate coefficient of degraded land to fertile land

6o Natural depletion rate coefficient of fertile land

7 Growth rate coefficient of technology concerning degraded land
Ho Natural depletion rate of technology

2.2. Assumptions

1.

Biomass density (B) follows a logistic growth pattern, where its growth rate and
carrying capacity increase with the area of fertile land ().

The area of degraded land (L;) increases at a constant rate due to natural and
anthropogenic factors but can be reduced by technological efforts.

Fertile land (L,) is obtained by applying technology (7T') to degraded land (L),
making it directly proportional to both.

Technological efforts (T') are modeled in two ways:

(a) Scenario I: Technology varies linearly with degraded land.
(b) Scenario II: Technology varies logistically with degraded land.

Natural depletion affects all state variables (B, L1, Ly, T), and these effects are
captured by respective depletion coefficients.

3. Scenario 1. Technology (T') linearly varying with degraded land (L)

3.1. Mathematical Model Biomass density can be increased by using technology
to improve degraded land. To model this scenario, let us consider four variables which
are non-linearly interacting, namely; biomass density of resource B(f), the area of
degraded land L, (#), the area of obtained fertile land L,(¢) and the magnitude of tech-
nology (machinery, fertilizer etc.) 7(¢). The model which governs the dynamics of the
system consists of nonlinear ordinary differential equations as follows:
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B _ (B B2) B+ s{BL, + s,B*L (3.1)
dr =S I S0 51 2 S 0 .
dL

_dtl =Q0-06L1 —-6TL; (3.2)
dL

d—tz =06,TL; — 6oL, (3.3)
dT

= =uL; - T 3.4
77 ML~ o 3.4

where, B(0) > 0, L;(0) >0, L,(0) >0, T(0) >0, s —so > 0.

The equation (3.1) of the above model governs the biomass density varying
logistically where s is the intrinsic growth rate of B and L is the carrying capacity of
B. The growth rate of B and carrying capacity of B increase with the increase of fertile
land L,. s; denotes the intrinsic growth rate of B due to L, and s, denotes the rate
of contribution to carrying capacity of B due to L,. s is natural depletion coefficient
in B (biomass density). In the equation (3.2), it is supposed that degraded land L;
increases constantly with rate Q, ¢y is the coefficient due to natural depletion and 9,
denotes depletion rate coefficient of L; due to technology (7). In the equation (3.3),
L, (fertile land) is obtained by applying technology on degraded land L; and hence,
L, is directly proportional to both 7 and L; i.e. §;TL,. Here, 6 denotes the conversion
rate coefficient for degraded land L, using technology, and 6 is the rate coefficient
of natural depletion in L,. In the equation (3.4), the growth rate of technology is
directly proportional to the area of degraded land L;, where, u denotes the growth rate
coeflicient of T with respect to L; and yy is its natural depletion. Here, technology is
linearly varying with L;. The model (3.1) - (3.4) is compatible with the real-world
situation and the state variables of the system represented by the flow chart depicted
in fig. 1
3.2. Bounds of variables Bounds of variables for the model system (3.1) - (3.4)
are given by the lemma, which is as follows:

LemMma 3.1. The set A denotes the region of attraction. All solutions commencing
inside A, remain inside it.
A={(B,L,[5,T)ER*: 0<B<Bpu, 0<L <Ly, ,0<L, <Ly ,0<T<Thu)

s+ s1L )
where, By, = s—lz”’“, provided — — s,L,, . >0,
T =5l L
L 2
Y L = 06,10 _ Ko

Lnax = & 0 M2max — ’ -
do 100260 " oo
Proor. From equation (3.1) we get,

— < B(l - —) + BL + BZL
S S N
It L 1 2 2 2

! Note: Fig.1 shows the effect of applying technology on degraded land
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Degraded land

Applying
technology

Re-obtain fertile
land

Increase in biomass
density

Ficure 1: Increase in Biomass density improving degraded land

s+ s1Lo

= lim supB(t) < == = By (say),
o + =%l
Again, from equation (3.2) we obtain,
dL, <0-6L
dt — o™

— tlim supL(t) < 62 =L,,, (say),
—00 0

Further, from the equation (3.3) we get,

dL,
— < 66TL, — 6L
i 11 Ly = boln

. 05,uQ?
= lim I < =1
th supLy(t) < 0 2 (52Y),

Mo 0v0
Now, from equation (3.4) we get,

< “l N 1
l —= 1 0
ﬂQ

= lim supT(f) < — = T4, (say).
t—oo /1060

Hence, the proof. O

3.3. Equilibrium analysis In a dynamical system, the state which remains consis-
tent across time represents the equilibrium point. There are two non-negative equilib-
rium points in B— L; — L, — T space denoted by E(0, L, L,,T)and E*(B*, Ly, L5, T").
The equilibrium points of the system (3.1) - (3.4) are obtained by equating to zero
the right hand sides of equations (3.1) - (3.4).
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3.3.1. Existence of Ey The existence of Ej is obvious. we get E, after solving
algebraic equations, which are as follows:

B=0, (3.5

Q-6 —6,TL, =0, 3.6)
06,TL, — 6yLy = O, (3.7)
uLy — poT =0, (3.3)

on solving (3.6) - (3.8) we get
I 0 o T
1

TS0+ T 27 6y(6 +6T)
w001 T* + o80T — Qu =0

and a quadratic equation in 7 i.e.

which gives a unique positive root. Now, the expressions of the variables at equilibrium
point Ej are as follows:
B=0,

—80Ho + [ + 4S110uQ

20110
__ 9
S S0+ 0,1
L - 05,7 Q _
00(60 + 01T)
3.3.2. Existence of E* The following algebraic equations can be solved to get E*:

T =

L

B
s(1 - Z) —So+s1Ly + $2BLy =0, (3.9)
Q-06oLy —61TL =0, (3.10)
061TLy — 6y, = 0, (3.11)
,uLl —,uoT = 0, (312)

on solving (3.9) - (3.12) we get
s— 8o+ 8511 0 06, TQ
B= L y= ——— =
0p(6g + oT)

(s ) s Ly = Sot ol and a quadratic equation in 7 i.e.
T~ 5202
L

w001 T? + p1o8oT — Qu =0

which gives a unique positive root. Now, the value of the variables at equilibrium point
E* is as follows:
s — 5o+ SILZ

s

(z - 52L%)

B =
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. s . ) . s
provided A s2L5 > 0 which holds since I > S5 Lomax

T
Y S0+ 0, T

. 06T0
27 00(80 + 61T*)°

—S0Ho + S5 + 4Qupod,

20110

T" =

dL
REMARK 3.2. We see that at equilibrium point d—l < 0, which shows that as the rate

coefficient of technology increases at the equilibrium level there is a decrease in infer-
tile land area. From the model system (3.1) - (3.4), we have

Q- 6oL —6,TL; =0,
uLly — poT =0,

differentiating above equations with respect to y we get,

dL, _dT dL,
-00— —-60—L —-6,T— =0, 3.13
rmialreia s (3.13)

dL dar
p=—+Li = py—— =0, (3.14)

du du

on solving (3.13) and (3.14) we get,

)
dhy ___du”

= 3.15
du (6o +61T) (5.15)

dT* dL
0 > 0. Clearly, s 0ar Ly = L}, which shows

du (2u061 T + p1060) du .
that the area of infertile land decreases as the rate of technology increases at the

equilibrium point L;.

since,

3.4. Stability analysis The system (3.1) - (3.4) is non-linear so, we can’t find its
exact solution but long term behavior of the system can be analyzed by using stability
analysis.
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3.4.1. Local stability The local stability of the system is determined by signs the
eigenvalues of the Jacobian matrix corresponding to the equilibrium state. The
following theorem states the local stability analysis of Ej and E*.

THeoreM 3.3 (Local stability). Ey is always unstable equilibrium point. There is not
any constraint required for the interior (non-trivial) equilibrium point E* to be locally
stable.

Proor. For the model system (3.1) - (3.4), Jy (Jacobian matrix) at E, is given as
follows:

s— S0+ S1£2 0 0 0
oo 0 ~So—-6T 0 -6L
0= 0 05,7 -6, 66,L,
0 H 0 —uo

now, s — so + s1Ly is positive eigen value of the matrix Jy. Therefore, E is unstable
in B-direction. Jacobian matrix J* associated to E* (nontrivial equilibrium point) is as
follows:

an 0 aiz 0
|0 —s-aTt 0 s
0 06,7 -6y 66"
0 H )
where,

ap = B*(—% +52L3),a;3 = s1B" + $,B*2.

The eigen value for this matrix can’t be easily evaluated by Routh-Hurwitz criteria.
Hence, we use some suitable Lyapunov function to determine local stability of E*.
First, we linearize the system (3.1) - (3.4) about E*(B", L*l‘, L;, T*) by using the trans-
formations:

B=B"+b,Li=Li+1;,L, =L +L,T=T" +1, (3.16)

where, b, [1, [, t; are small perturbation around E*.
Take a positive definite function about E*

Imb? 1 1 1
S R TR - SR (3.17)

V=3T% "3 2 2

where, m; > 0, my > 0, m3 > 0 and m4 > 0, to be chosen properly.
Differentiating V taken in equation (3.17) with respect to t yields,

d—V—mlb@+ l%+ l%+ t%
di B dr gy TRy T

(3.18)
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using the model equations in (3.18) and after simplification we get,

E = —ml[z - S2L2]b2 —my[og + 01T ]l% - m30()l§ - m4u0t% + [ml(sl + 5B )]blz

+ [I’I14u - m251LT]l1t1 + I’I13[051LT]121‘1 + m3[9(51T*]1112. 3.19)

av . L . . .
" comes out to be negative definite if, the some constraints are satisfied, which

are as follows:

[mi(s1 + 52BN < Smimabo(7 = 52L3) (3.20)
[map — myS1 LT 1* < mamapao(So + 61 T*) (3.21)
#\2 2
M3(951L1) < §m490,u0 (322)
12 2 *
m3(00,T7)° < §m290(50 +0,T7) (3.23)
. o1L
choosing, my = 1, m3 = 1, my = ——, we get,
u

S
(Z - 5,L5)6;

Ho (6o +61T7)
(s1 + szB*)20261

IULT ’ (51 T*2

my < g Min{ ) (3.24)

dv . . . . . . L
Thus, — is negative definite and there is not any constraint required for the interior

(non-trivial) equilibrium point E* to be locally stable.
O

3.4.2. Global stability By employing a suitable positive definite Lyapunov function,
global stability of interior equilibrium can be obtained in the region of attraction A.
The summarization of global stability behavior of E* is provided in the following
theorem.

THeOREM 3.4 (Global stability). There is not any constraint required for the interior
(non-trivial) equilibrium point E* to be globally stable inside the region of attraction

A.

Proor. Take a positive definite function

Bk k k
W=k(B-B ~BIn_)+ 32(L1 L)+ 33(L2 L)+ E“(T — T2, (3.25)
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where, k; > 0, kp > 0, k3 > 0, k4 > 0, to be chosen properly. The function W
is considered after checking that it is zero at equilibrium E*(B*, L], L5, T*) and it is
positive for all different positive values of B, Ly, L, and 7.

Now, differentiating W taken in equation (3.25) with respect to ¢ we get,

. A « « % * *
W=—kmz—nQXB—Bf—kﬁ%+6ﬂﬁaq—AV—h%da—%f
— kapo(T = T*Y* + [ki (51 + 52B)1(B — B*)(L — L})
+ [kapt — koS Ly I(Ly = LT = T*) + k306, L(T = T*)(Lp — L) (3.26)
+ k3961T*(L1 - LT)(LZ - L;)

W comes out to be positive definite [21] in the region of attraction A if, the following
constraints are satisfied:

4
Kn+hmmmm<§hh%§—nq> (3.27)
0, ,
[kapt — k251%] < kokapio(60 +01T7) (3.28)
2
k051 2 < Zkapuoblo (3.29)
) 3
*\2 2 %
k3(951T ) < gkg@o(éo + 51T ) (330)

)
Choosing, ky = 1, k3 = 1, k4 = I—Q, we get,
Moo

2 S %
Oz =90 s 60+ 61T

M )
Mo 6T

8

(S] + S2Bmax)2(9261)

dw . . . . . .
Thus, s is negative definite and there is not any constraint required for the

interior (non-trivial) equilibrium point E* to be globally stable inside the region of
attraction A.
O

3.5. Model’s Persistence In a real-world situation, state variables remain positive
for any period if initially those were positive. Mathematically, if Z(0) > 0, then
Z({) > 0V tand tlim infZ(t) > 0. If we can find some € > 0 independent of Z(0),
which is the initial condition, such that tlim infZ(t) > € then the system satisfies the

persistence condition. The persistence of the system (3.1) - (3.4) is provided in the
following theorem:
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THEOREM 3.5 (Persistence). The uniform persistence of the system (3.1) - (3.4) for
> 0 where,

max

increasing biomass density by improving degraded land holds if % )

L, is the upper bound of the fertile land.

max

Proor. To prove system persist uniformly, from (3.1) of the model (3.1) - (3.4) we
get,

dB )
— >(s—so+ 1Ly )B—(=—-s,L, B
o ( o+ s1Ly,,)B —( 7% 2ar)

s—5o+ 8511y
lim infB(t) > (5= 50+ $150,) 5 0+ Sila,) = Buin(say),
t—o00

2 5L
(L $200,,,)

Here, By, > 0if > — 5oL,

Now, from (3.2) we get,

> 0. Also, 0 < Byin < Bpax-

max

dL, 0
—_— > =1
dt 00 + 01T max
—_— Q
liminflLi(t) > ————— =1L, , s
lim infLi(0) 2 5 = Ly, (5@)
Clearly, L,,, >0and L,,, <L;,, = (% From (3.4) we get,
0
dar Ly .
- 2 ﬂ 1171171 — Tmln
dt Ho
=
. . /’tlein
lim infT(t) > —= = Tpin(say),
1—00 /10
Here,
Y 0
0 < Thpin = K < £ = Tnax-

Ho(S0 + 61T max) Moo
From (3.3) we get,

dLy(t) 06,10
dt " po(8o + 61T max)*60

06,10
/10(60 + 61 Tmax)zeo

lim infL,(r) > =L, (say)
t—o00
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06,uQ? 06,uQ?
ThuS, O < Lzmin = lllQ 2 < ll;Q = L2
/10(50 + 01T ax)“6o /106000 ’
Hence, from above using Lemma 3.1 we can easily obtain the following conditions:

Bmin < lim me(t) < tllm supB(l‘) < Bmaxa
1—00 —00

Ly <liminfL(¢t) < lim supL(t) < L;
—00 1—00

min max

L < lim infLy(t) < lim supLy(t) < L .,
—00 t—00 )

Tpin < tlim infT(t) < tlim supT(t) < Ty,

which shows that the system (3.1) - (3.4) persists uniformly. This is the proof of the
theorem. o

3.6. Numerical Simulation The feasibility of analytical results for the system (3.1)
- (3.4) is checked using numerical simulation in this section.The description of the
model’s variable and parameters is given the table 1. For the model, we consider the
following suitable set of parameter values,

s = 0.05, L = 10000, sp = 0.001, s; = 0.00001, s, = 0.0000000002, Q = 10,
6o = 0.05, 6; = 0.00001, 8 = 0.2, 6y = 0.00001, i = 0.01, o = 0.005.

Considering the aforemention set of parameters, the values of variables B, Ly, L,, T in
E* (non-trivial equilibrium point) are obtained as B* = 84193.10711, L} = 186.1406,
L5 =13859.3384, T* = 372.2813. To understand the variation in variables like B, L,

TaBLE 1: Description table for various parameters and variables

Description of parameter Symbol  Units and values

Intrinsic growth rate of biomass density s 0.05 per year

Carrying capacity of biomass density L 10000 kg per cubic metre

Natural depletion in biomass density S0 0.001 per year

Intrinsic growth rate of biomass density due to fertile land K 0.00001 per square km per year

Rate of contribution to carrying capacity of biomass density due to fertile land 8 0.0000000002 cubic meter per kg per square km per year
Constant growth rate of degraded land Q 10 square km per year

Natural depletion in degraded land 8o 0.05 per year

Depletion rate coefficient of fertile land due to technology applied on degraded land 6, 0.00001 square metre per Technological effort per year
Growth rate coefficient of fertile land due to technology applied on degraded land 6 0.2 unit less quantity lying between 0 & 1

Natural depletion in fertile land 6o 0.00001 per year

Growth rate coefficient of technology M 0.01 Technological efforts per square metre per square km per year
Natural depletion in technology Ho 0.005 per year

Time t year

Density of biomass resource B kg per cubic metre

The area of degraded land L square km

The area of fertile land L, square km

The magnitude of technology T Technological efforts per square metre
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& L, with time for distinct values of parameters, plots of these variables with time are
shown in fig. 2to fig. 6. Infig. 2, there is an increase in biomass density as the
parameter u increases while the other parameters are kept fixed. In fig. 3, the fertile
land is seen to increase as the parameter 6 increases considering the other parameters
fixed. In fig. 4, we have shown an increase in biomass density as 6§ increases taking
other parameters fixed. In fig. 5, we see that as we increase the parameter ¢ and take
the remaining parameters fixed, there is a decline in the degraded land. From fig. 6,
we conclude that fertile land increases as y increases taking other parameters fixed.
In figs. 7 and 8, plots of the solutions commencing inside the region of attraction
A are shown. All the solution curves tend towards the equilibrium value showing the
global stability in L; — T-space and L; — L, — T-space.

3.7. Sensitivity Analysis Herein, we have discussed the semi-relative basic differ-
ential sensitivity analysis of the state variable of the model (3.1) - (3.4) with respect
to 6, o1, 1 [20].

Consider, a state variable ¥ and a parameter u then the semi-relative sensitivity func-

. . . ox(,
tion of Y with respect to u is Y, (t,u) = M where

1(@1/@)) _Of oY () .\ of
dt\ ou | 0Y Ou = Ou

(3.32)

with initial condition oY)

0
= 0. Here, a—;: denotes the Jacobian of the model (3.1)

0
- (3.4) and a—f denotes derivative of R.H.S. of the model system (3.1) - (3.4). The
u

sensitivity solutions are obtained by solving system (3.32) for Y,(z, u) after coupling
it with the system (3.1) - (3.4). Now, uY,(t,u) represents the semi-relative basic
differential sensitivity solution. The effect of doubling the parameter u on the state
variable at different time interval is shown in the plots obtained from semi-relative
sensitivity analysis with respect to u.

Now, the semi-relative sensitivity system for state variables with respect to parameter
6 is as follows:

By(1.0) = s[Ba(z.0) — 2559

By(t, 9)] - S()Bg(l, 9) + 5 Bg(l, G)LQ([, 9)

+ 51B(t,0) Lo, (t,0) + 25, B(t, 0)By(t, O) Lo (t, 0) + 5:B*(t,0) Ly, (¢, 6)
Ly, (t,0) = =60Ly,(t,0) — 61 Ty(t,0)L1(t,0) — 6, T(t,0)Ly,(t,6) (3.33)
Ly, (t,0) = 61T(t,0)L1(t,0) + 06,T(t,0)L1,(t, 0) + 05, To(t,0)L,(2,6) — Gy Ly, (¢, 0)
Ty(t,0) = uLy,(1,6) — uoTo(t, 6)
Similarly, we can find the semi-relative system for state variables with respect to ¢,

and u. The basic differential sensitivity solution of four state variables B, L;, L,, T are
plotted relative to the parameters 6, 6, u. These plots are illustrated in fig. 9. From

2 Note: Table 1 describe the values and units of the various parameters and variables
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plot 9a of fig. 9, we observe an increase in the biomass density due to the doubling
of 0, 61, u. Here, we notice that biomass density increases by 74.4 kg/m?, 70.7 kg/m?>,
7.5 kg/m?® concerning 6, &,  respectively, in 50 years. We notice from plot 9b of fig.
9 that there is a negative impact on the area of degraded land due to the doubling of
0, 01, u, this is because fertile land is obtained from degraded land. From plot 9b, we
note that L; decreases by 11.9 km? due to doubling of ; and 1.9 km? due to doubling
of u in 50 years. In plot 9c, we observe that L, increases by 6.94 km?, 6.6 km? and
0.8 km? due to 6, 6y, u respectively, in 50 years. From the last plot 9d, we detect that
01 and 6 decrease the magnitude of technology because degraded land is converted
into fertile land by using technology while yu increases the magnitude of technology
by 81.5 kg/m? in 50 years.

REMARK 3.6. 6 is the most influential coefficient for biomass density and fertile land
in the system. The policymakers can choose the appropriate value of 6 according to
the rate of degradation in different conditions like hilly, desert and coastal areas to
increase the technological efforts to improve degraded land.

4. Scenario II. Technology (7) is varying logistically with degraded land (L)

4.1. Mathematical Model In this case, technology is varying logistically with de-
graded land. The model which governs the dynamics of the system consists of nonlin-
ear ordinary differential equations as follows:

dB B?
—- =s(B=—) =B +s1BLa + 52B°L, (4.1)
dL
d_tl =Q-6yL; -6, TL 4.2)
dL
d—tz =056,TL, - 6yL, (4.3)
dT
o et - poT? (44)

where, B(0) > 0, L;(0) >0, L,(0) >0, T(0) = 0, s — 59 > O.
Equations (4.1) - (4.4) in the model are the same as the earlier scenario (I) 1.1
but equation (4.4) governs the technology varying logistically with L. Here, uL; is

the intrinsic growth rate and i} is the carrying capacity. Both carrying capacity &

Ho
intrinsic growth rate of 7 increase with an increase in the degraded land L;.

4.2. Bounds of variables Bounds of variables for the model system (4.1) - (4.4)
are given by the lemma, which is as follows:

Lemma 4.1. The set A denotes the region of attraction. All solutions commencing
inside A remain inside it.

A={(B,L1,[5,T)ERY: 0< B< B, 0<Li <L, ,0<L, <L,

max’ - max’

O S T S Tmax/ly
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s +s1ly,,
where, Bpax = , prowded = -5l >0,
T S2L2ma)
L 2
C_0, @ . u0
max 60 4 max ”06300 > max /1060

We skip the proof of lemma 4.1 since its proof is similar to the proof of lemma
3.1 provided in 3.2.

4.3. Equilibrium analysis There are four non-negative real equilibrium points in
B— L, — L, — T space denoted by E(0, = Q ,0,0), E1(0,Ly, Ly, T), Ez(B Q ,0,0) and
o

E*(B*, L}, L;, T") obtained by putting right hand sides of equations (4.1) - (4 4) equal
to zero.

4.3.1. Existence of Ey Taking B=0& T =0 we get, L| = 62 and L, = 0.
0

4.3.2. Existence of E; The existence of E; is obvious which can be obtained by
taking B = 0 & T # 0 and solving the following algebraic equations:

0 —-8oL; — 6;TL; =0, 4.5)
06,TLy — 6oL, = 0, (4.6)
uly - T = 0, 4.7

on solving (4.5) - (4.7) we get
L __ 0 6510
L S0+ 01T 2 0y(60 +0T)

1081 T? + podoT — Qu =0

and a quadratic equation in 7 i.e.

which gives a unique positive root. Now, the value of the variables at equilibrium point
E, is as follows:
B =0,

—6oto + JOguG + 461;10#Q

20110
L=—2
oo +0.T
. 05, T
[=_%T2
Oo(60 + 017)

T =

4.3.3. Existence of E, Take B # 0&T = 0 we get, L, = (52’ L, = 0 and
0
s — 5o+ le;

(——SzL)

B =
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4.3.4. Existence of E* The following algebraic equations can be solved to get E*:

s(1 — %) — 8o+ s1lp + soBL, =0, 4.8)
Q—-60L; —0,TL; =0, 4.9
06,TLy — 6yL, = 0, (4.10)
uLy — poT =0, (4.11)
on solving (4.8) - (4.11) we get
B="_2 * ik L Q L, = M and a quadratic equationin 7 i.e.

(£_52L2) ’ 1_5o+51T7 2_90(60+5T)
L

Hod1 T2 + podoT — Qu =0

Now, the value of the variables at equilibrium point E* is as follows:

s =80+ s1L]

B = — — provided % - 5L5>0
(Z - S2L2)
L0
09+ 01T
. 65T"Q
2 00(6o + 61T
- =Oopo + g + 4Qup0d)
T = .

26110

4.4. Stability analysis

4.4.1. Local stability The following theorem states the local stability analysis of
Eo,El,Ez and E*.

THeorREM 4.2 (Local stability). Eo,E|,E, are always unstable equilibrium points.
There is not any constraint required for the interior (non-trivial) equilibrium point
E* to be locally stable.

Proor. For the model system (4.1) - (4.4), Jo (Jacobian matrix) at Ej is given as

follows:
s—s9 O 0 0

0 -6 O —519

J = g
°7 o 0 -6, 65=
6o

0 0 0 u=
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Here, s — 59, =09, —00, uég are eigen values of Jy. Clearly, s — 59 and #62 are positive
0 0
eigen values. Therefore, E is unstable in B & T-direction.

Now, for E, the Jacobian matrix J; is given as follows:

s— 50+ s1Ly 0 0 0
- 0 ~So-6T 0 -6,
' 0 0,7 -6y 66,L
0 H 0 —w

Here, s — so + s1L5 is positive eigen value of the matrix J,. Therefore, E| is unstable
in B-direction.
Again, for E,, the Jacobian matrix J; is given as follows:

s—so 0 5B+ s:B? 0

0 —do 0 -0 g
0o
L= 0 o o 05,2
éso
0 0 0 =
M 5
Here, s — s9, —0¢, —09, ;152 are eigen values of J,. Clearly, s — s and ,116g are positive
0

0
eigen values. Therefore, E, is unstable in B & T-direction.
Now, Jacobian matrix J* associated to E* (nontrivial equilibrium point), is as follows:

ai 0 as 0
s 0 —h-ar 0 s

0 66T -6 66

0 H 0 —u
where,

apn = B*(—% + S2L§), apz = s1B* + SzB*z.

The eigen value for this matrix can’t be easily evaluated by Routh-Hurwitz criteria.
Hence, we use some suitable Lyapunov function to determine local stability of E*.
First, we linearize the system (4.1) - (4.4) about E*(B*, L}, L}, T*) by using the trans-
formations

B:B*+b,L1:LT+11,L2:L;+12,T=T*+2‘1, “4.12)

where, b, [y, I, t; are small perturbation around E*.
Take a positive definite function about E*

lmb> 1, 1 5 1 f
= ——— 4+ —mpl{ + =m3l5 + —my— 4.13
5 g tamali+ gmsly + omar, (4.13)
where, m; > 0, my > 0, m3 > 0 and my4 > 0, to be chosen properly.
Differentiating V taken in equation (4.13) with respect to t yields,

Vv

av _ m1b db + ] dl + / dl, + myty dty
dt B dr " T T* dt’

(4.14)
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using the model equations in (4.14) and after simplification we get,

dv

S « *
E = —ml[z - S2L2]b2 —my[6g + 01T ]l% - WL30()I% - m4,u0tf

+ [my(s1 + $2B")1bly + [map — mp6, L7111
+m3[9611f1<]12t1 +m3[951T*]lllz. 4.15)

\% . . . . .
— comes out to be negative definite if, the some constraints are satisfied, which are

as follows:
12 4 S *
[mi(s1 + 52B7)]" < §m1m390(z - 5L) (4.16)
[map — my61 L 1> < mymapio(So + 61T°) (4.17)
w2 2
M3(9(51L1) < 5"’1400/10 (4.18)
*\2 2 *
m3(00,T7)" < §m290(60 +0T) 4.19)
. o1L;
choosing, mp = 1, my = ——, we get,
u
(2~ 5,162
g8 ‘T2 So+6,T*
m L o HO M}_ (4.20)

<L T g
9 (s + 2B)206, L 8,17

dv . . . . . . S
Thus, — is negative definite and there is not any constraint required for the interior

(non-trivial) equilibrium point E* to be locally stable.
m]

4.4.2. Global stability The summarization of global stability behavior of E* is
provided in the following theorem.

TueOREM 4.3 (Global stability). There is not any constraint required for the interior

(non-trivial) equilibrium point E* to be globally stable inside the region of attraction
A.

Proor. Take a positive definite function

Bk k T
W =ky(B—B* = B In —) + —(L; — L) + =(Ly — L})* + ks(T = T* = T*In —),
B2 2 T
421
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where, k; > 0, ko, > 0, k3 > 0, k4 > 0, to be chosen properly. The function W
is considered after checking that it is zero at equilibrium E*(B*, L, L5, T*) and it is
positive for all different positive values of B, L, L, and T'.

Now, differentiating W taken in equation (4.21) with respect to ¢t we get,

X s * * * *
W= k(] - 2L;)(B- B Y —ka(So + 1 T*)(Ly = L})?
— k3bo(La — L3)* — kapto(T = T*)* + [ki(s1 + $2B)I(B — B")(Ly — L)
+ [kapt = koS1 Ly |(Ly = LT = T*) + k308, Ly (T = T*)(L — L)
+ k300, T*(Ll - LT)(LZ - L;) 4.22)

W comes out to be positive definite [21] in the region of attraction A if, the following
constraints are satisfied:

4
[(s1 + $2Bua)ki I < gklkseo(% — 5,13 (4.23)
0, .
(kg — k2616_0] < kokapo(6o +61T7) (4.24)
2
k(0612 < Zkapiotly 425)
0o 3
%12 2 *
k(081 T")" < Shabo(Go + 61T") (4.26)

o
Choosing, ky = 1, k4 = I—Q, we get,
Hbo

2 S *
_8 HGgmeb) (0o B0+ 817")
— in ,
9 (Sl + SZanax)z(gzél) Q,Ll 61T)k2

ki L. 4.27)

dw . . . . . .
Thus, —— is negative definite and there is not any constraint required for the

interior (non-trivial) equilibrium point E* to be globally stable inside the region of
attraction A. O

4.5. Model’s Persistence The persistence of the system (4.1) - (4.4) is provided in
the following theorem:

THEOREM 4.4 (Persistence). The uniform persistence of the system (4.1) - (4.4) for
increasing biomass density by improving degraded land is hold if % -l >0

max

where, L, _is the upper bound of the fertile land.

max

We skip the proof of theorem 4.4 since it is similar to the proof of theorem 3.5
givenin 3.5.
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4.6. Numerical Simulation The feasibility of analytical results for the system (4.1)
- (4.4) is illustrated using numerical simulation in this section. For the model, we
consider the following suitable set of parameter values,

s = 0.05, L = 10000, sp = 0.001, s; = 0.00001, s, = 0.0000000002, Q = 10,
6o = 0.05, 6; = 0.00001, 8 = 0.2, 6y = 0.00001, i = 0.01, o = 0.005.

Considering the aforemention set of parameters, the values of variables B, Ly, L, T
in E* (non-trivial equilibrium point) find out as B* = 84193.10711, L} = 186.1406,
L; = 13859.3384, T* = 372.2813. To understand the variation in variables like B, L,
& L, with time for distinct values of parameters, plots of these variables with time are
shown in fig. 10 to fig. 14. In fig. 10, there is an increase in biomass density as the
parameter u increases considering other parameters fixed. In fig. 11, the fertile land is
seen to increase as the parameter 6 increases while the other parameters are kept fixed.
In fig. 12, we have shown an increase in biomass density as 6 increases taking other
parameters fixed. In fig. 13, we see that as we increase the parameter y and take the
remaining parameters fixed, there is a decline in the degraded land. From fig. 14, we
conclude that fertile land increases as the u increases taking other parameters fixed.
In figs. 15 and 16, plots of the solutions commencing inside the region of attraction
A are shown. All the solution curves tend toward the equilibrium value showing the
global stability in L; — T-space and L; — L, — T-space.

4.7. Sensitivity Analysis As we have done in the subsection 3.7, the semi-relative
sensitivity system for state variables of model equations (4.1) - (4.4) concerning
parameters 6, 0; and u can be obtained. The basic differential sensitivity solution of
four state variables B, L;, L,, T are plotted relative to the parameters 6, ¢,, 4. These
plots are illustrated in the fig. 17. From plot 17a of fig. 17, we discover an increase
in the biomass density due to the doubling of 6, §;, u. Here, we notice that biomass
density increases by 74.7 kg/m?>, 67.6 kg/m?>, 67.6 kg/m? for 6, 6, u respectively, in 50
years. We notice from plot 17b of fig. 17 that there is a negative impact on the area of
degraded land due to the doubling of 6, 61, y, this is because fertile land obtains from
degraded land. From plot 17b, we note that L; decreases by 9.6 km? due to doubling
of §; and u in 50 years. In plot 17c, we observe that L, increases by 6.94 km?, 6.27
km? and 6.27 km? due to 6, §;, u in 50 years. From the last plot 17d, we detect that
01 and 8 decrease the magnitude of technology because degraded land is converted
into fertile land by using technology while u increases the magnitude of technology
by 349.6 kg/m? in 50 years.

5. Conclusion

The world’s population is growing swiftly. In the present circumstances, it is a huge
challenge to meet the elementary needs of the growing population. To prevail over
this situation, we need to adopt various methods or techniques to increase biomass
production. Based on this thought we have proposed and analysed two non-linear
mathematical models for increasing the biomass density by re-obtaining fertile land
from degraded land using technology on degraded land. In these models, four variables
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are considered. These variables are the biomass density, the area of the degraded land,
the area of the fertile land and the technology. The following two cases for use of
technology are considered:

Scenario I- Technology linearly varying with degraded land.

Scenario II- Technology logistically (non linearly) varying with degraded land.
The model is analysed by using equilibrium analysis & the stability theory (local and
global stability), persistence of system and sensitivity analysis of differential equa-
tion. In scenario I, two equilibrium points are obtained. One is stable and another is
unstable. In scenario II, we have found four equilibrium points. Only one is stable
and remaining three are unstable. The effect of various parameters on equilibrium
points is shown in the numerical simulation. All the solution trajectories converge to
the equilibrium point with increase in time. we have examined the effect of doubling
vital parameters on the state variables in the sensitivity analysis. In both the cases,
key parameters increases the biomass density positively and there is a negative effect
on degraded land because it is used to obtain fertile land by applying technology. In
both cases, analysis of models reveals that by using technology, degraded land can be
converted into fertile, leading to an increase in the biomass density.
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