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A PAL-TYPE INTERPOLATION ON THE ROOTS OF THE
INTEGRATED LEGENDRE POLYNOMIAL

APURVA SINGH* ™ and REKHA SRIVASTAVA

Abstract

The purpose of this paper is to study an interpolation process on the roots of polynomial m,(x)and it’s
derivative 7, (x) with an additional conditional point xo = 0. Here, we have two sets of nodes {)c,-}?=l and
{x; }2-!, which are the roots of polynomials 7, (x) and m,(x), respectively. Further, we study the existence,

i=1°
uniqueness, explicit representation and order of convergence of interpolatory polynomial.
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1. Introduction

Pal [14], Mathur P. and Datta S. [12] and many other authors [1], [4], [7], [11] have
discussed various kinds of interpolation problem. In 1975, P4l [8] proved that when
the values are fixed on one set of n points and derivative values on other set of n — 1
points, then there exist no unique polynomial < 2n—2, but prescribing function value at
one more point not belonging to above set of n points there exists a unique polynomial
of degree < 2n — 1. In [16], Eneduanya investigated special case when

m(x)=—-nn-1) f" P,_i1(x)dx=(1 - xZ)P;_l(x), (1.1)
1

where P,_;(x) is the (n — 1)th the Legendre polynomial with the usual normalization
max {|P,—1(x)| : x € [-1, 1]} = 1. For the uniqueness, Eneduanya used also the addi-
tional condition nodal points x;, = —1. Szili [10] investigated the P4l-type interpolation
on the roots of the Hermite-polynomials with the additional conditional point xo = 0.
Both Szili and Eneduanya gave explicit formula and proved approximation theorems.
Jo6 and Szabé [3] gave a common generalization of the classical Fejér interpolation
and P4l interpolation. Szili[9] studied the inverse P4l interpolation problem on the
roots of integrated Legendre polynomials. Later, R.Srivastava and Yamini Singh [15]
studied an interpolation process on the roots of ultraspherical polynomials.
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In this paper, we have studied an interpolation on the roots of polynomi-
als m,(x). Let X0, X10, X25--5 Xy be the roots of the polynomial m,(x) and
x*l"n, x;’n, x;n, sz—l,n be the roots of polynomial 7, (x). Let

=1 =200 <Xy, < Xpoin < e <Xop < x*{’n <xpp =1 (1.2)

Further, we investigate the following problem by assuming a polynomial R,(x) of
lowest possible degree satisfying the conditions,

Ry(Xip) =Yin (@(=1,.... n), Ry(xo0,) =0, and R, (x;,) =y;, (=12,..,n-1),

(1.3)

where, y;, and y;, are arbitrary given real numbers. Moreover, we prove the ex-

istence, uniqueness, explicit representation and order of convergence of interpolatory
polynomials.

2. Preliminaries

According to [7], the following relationships for Legendre polynomials are ob-
served as:

L. P ()=inn-1= (=1)"P(,_,(=1)
2. P/ (D)= 3n(n—-D@n+DP,_ (1)
3. () =)= = —n(n-1)

4. 1) =—3n*(n—1)%
Furthermore, P,_(x) and m,(x) satisfy the following differential equation, respectively
(1 = x*)P! | (x) = 2xP_,(x) + n(n — 1)P,_1(x) = 0,
1 — X))/ (x) + n(n — Dr,(x) = 0. (2.1)

3. Explicit Representation of Interpolatory Polynomial
Let us consider the following polynomials for even values of n,

T (X)
m,(0)

AO,n(x) = 3.1

X7, (X)7, (x) B 7 (x)
Xin (7T§1(16i,n))2 (X = Xip)  Xin (T(x00))
{ f ) (O7,(Xi ) = Xin T (X 0)70,(1) }
X dty,
0 (t - xi,n)
(i=1,2,....n) 3.2)

Ai,n(x) =
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and
Bty = 2O ) (70 (i=1,2 D G3)
in(x _n(n—l)ﬂ%(xzn) o Gox) , i=1,2,....,n . )

The polynomials A; ,(x) and B;,(x) are uniquely determined by following conditions:

Ain(xj) =65 (=0,1,2,3,...,mj=0,1,2,3,...,n),
AL =0 (=0,1,2,3,...,mj=1,23,...n-1),
Bin(x;)=0 (i=1,23,....n—1;j=0,1,2,3,....n),
BL(x,)=6; (i=123,....n-1j=123,...n-1),

where 0; ; is the kronecker symbol. Now, let f : [-1,1] — R be a differentiable
function. If n is even, then we get that

n—1

R(f:2) = " fximAin(x) + Y f/(x7,)Bin(), (3.4)

i=0 i=1
is the uniquely determined polynomial of degree < 2n — 1 satisfying the condition
Ry(fixin) = f(xin) (1=1,2,3,.......,n),
R(fix;,) = f(x,) (=123...n-1),
Ru(f5 x0,) = 0.
Note: For conciseness, we use subscript (i), in place of subscript (i,n).

Lemma 3.1. The following estimates hold:

[(1 — x)n(n - 1)]5
Pl [ A —

|7rn(x;.“) i=123,....(1n-2)/2), (3.5)

87+ 1)
12

)| = O > - (3.6)

ofs [ 2)/2 3.7

| () ‘[W] (i=1,2,3, e, (n +2)/2). (3.7)

The proof of this lemma can be found in [9].
Lemma 3.2. For the Lebesgue function of the fundamental polynomials
DA =00 (xel-1,1], n=2,4,.),
i=0

where O does not depend on x.
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Proor. We have

Ai(x) _ x”;(x)ﬂ'n(X) ﬂ'n(x) {fx m;{(t)ﬂ;(x,') _ Xiﬂ;l'(x,-)ﬂ;l(t) dt}
0

T (a2 (- x) ()3 r—x;

n

-2

i=0

X7, ()70, ()

xi(7, (%)) (x — x;)

Zn] A = Z
i=0

i=0

Ta(X) { f ) (D7, (x;) — xi7 (X)) (1) dt}‘
0

xi(7), (X)) t— X
since |7,(x)] = O(n'/?) and |P,_;(x)| < 1 x € [-1,1] (from [5,2.3.4] ).

72| f (O, (%) = B T (o)
(m,(x))3| 1o =X

)| Il &

n n |x|
Z; 1= (2| 1x = xl-)|_; %

=0 Ni

n n

Z":I . Z x| n;(x)21 @l 17, ()| : fx tﬂ;l’(t)ﬂ,'l(x,-):x,:ﬂ;,'(x,»)ﬂ;l(t) "
= ()2 1 = x| S x| (x| 1o t—x;

i=0 Xi

n
D Ai0)] = Dy + Ds.
i=0

For next estimation, we use following relations
1
P,_1(t 2
f 1@ g e — (i=1,2...,n-1), (3.8)
St U | LANC ]

(from ([2],(3.4.3)and (15.3.1)),

P (D~ iTn® (i=1,2,3,......n/2), (3.9)

(from ([2],(8.9.2)]),
(1-x72) ~ (i/n)y, (3.10)

( from ([2], (6.3.7)),
1Pt (x)] = 8mi) ™72, (3.11)

(from ([5],Lemma 2.1).
Now,

(0| b ()]

()] 1Gx = x|

D, =

i=0 Xi

using equation (1.1)

- x| n(n = 1) [Py ()]
D = O(n'? = 0¥,
o )Zol xin2(n = 12 |P2_ (x| Ix = )] )




Integrated Legendre Polynomial 243

f * 1 (O () — Xt (x)m, (6) J t'

t— X

_ Z Iﬂn(X)l
x; | ()|

12
Y n3<n—1)31Pn s

10x’

f 1 (n = 1P, _ | (DP,-1(x;) = x;in*(n = 1) P, _ (x)Py1(2) dz’
X
0 =X

n 2 2
- O\ Al
D; = O(n ); xin?(n = 1)3 Py (x:)°)

fx tP;l_l(t)Pn_l(x,-) — X P;_l(x,-)Pn_l(t) d[l

r—Xx;

=0

DA = 0.
i=0
Thus, the proof of Lemma 3.2 is completed.

O

LemMma 3.3. For the Lebesgue function of the fundamental polynomials B, ,, the follow-
ing estimate holds:

n—1
DBl =00 (xel-1,1], n=2,4,...),
i=1

where O does not depend on x.

Proor. We have
()L = x2) % 7(1)

Bi = dt
) n(n— Dr(x}) Jo t—x;

()1 = X2 (F 7t
n(n— Dr(x)) Jo t—x;

'MI
=
z
Il

n—1
i=1

a

S m @[ - X2

f (1) dt’
-1 [—X:f
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Zwuwow%zl (- wm%wmm4
|(1 TZ)Z‘ |(PEn_1)(x;-“))2| nin—1) (t—x7)
$ 1(0
B om'”? f n- - o).
Z|m| m)2k1f6|wﬂwmq - )
Hence, the Lemma 3.3 proved . O

4. Theorem

THEOREM 4.1. Let f : [-1,1] — R be continuously differentiable function, then the
sequence of the interpolation polynomials R,(f;x)(n = 2,4,6, ...... ) given by (3.4)
satisfy the following:

IRn(f3 ) = f(0)] = O(HI/ZW(f'; %)) x € [-1,1], 4.1)

where w(f’, 0) is the modulus of continuity of f and O does not depend on x.

Proor. If 0,(x) is an arbitrary polynomial of degree < 2n — 1 then by uniqueness of
the polynomial R,, we have

n n—1
0u(¥) = )" Qu(x)A) + ) O (5)Bi(x). 4.2)
i=0 i=1

Let f : [-1,1] — R be a continuously differentiable function. It is well known from,
e.g.( [2],Theorem1.3.3) that there exist a polynomial Q,(x) of degree at most (2n-1)
such that

) = 0u(0)] = @w@%»

and .
Vm—gmhopvﬁ»,xHAM,

then by equation (4.2), we get

1f(x) = Ru(fs 0] < 1f(x) = Qu(X)] +

D7 (Qulx) = (i) Ai(x)
i=0

n—1

+ D@ - £1@) Bi()
i=1
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Based on Lemmas (3.2) and (3.3), it follows that

If(x) = Ru(f;x)| = O (n‘lw(f'; %)) +0 (n”zw (f’; %)) + 0(n_1W (f'; 1))

n

which completes the proof of theorem 4.1. O

5. Conclusion

In this paper, we have proved the existence, uniqueness, explicit representation,
and order of convergence of the given interpolatory problem, when {x;}!"_, and {x; ;7:‘11
are the roots of polynomials m,(x) and 7, (x) respectively, with additional conditional
point. If f : [-1, 1] — R be continuously differentiable function, then the sequence of
the interpolation polynomials R,(f;x) and R;,(f; x) uniformaly converge to f(x) and

f'(x) respectively on [-1,1] as n — oo.
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