C-COMPACTNESS IN FERMATEAN FUZZY TOPOLOGY

MAHIMA THAKUR, SAMAJH SINGH THAKUR [™] and ALPA SINGH RAJPUT

Abstract

The studies of Fermatean fuzzy sets and Fermatean fuzzy topology was initiated in the year 2019 and 2022 respectively. The present paper created the concepts of C-compactness, nets and filters in Fermatean fuzzy topological spaces. Several results related to characterizations and properties of fermaten fuzzy C-compactness have been established

2010 Mathematics subject classification: primary 54A40; secondary 54D30.

Keywords and phrases: Fermaten fuzzy set, Fermatean fuzzy topology, Fermatean fuzzy C-compactness.

1. Introduction

The fusion of technology and generalized forms of classical sets is very useful to solve many real world complex problems which involve the vague and uncertain information. A classical set is defined by its characteristic function from universe of discourse to two point $set\{0,1\}$. Classical set theory is insufficient to handle the complex problems involving vague and uncertain information. To handle the vagueness and uncertainty of complex problems, Zadeh [19] in 1965, created fuzzy sets ($\mathcal{F}S$ s) as a generalization of classical sets which characterised by membership function from universe of discourse to closed interval [0,1]. FS theory is applicable in various areas such as control theory, artificial intelligence, pattern recognition, database system and medical diagnosis. After two years of creation of \mathcal{FS} s, Chang [3]initiated the study of fuzzy topology. Now fuzzy topology is established a separated branch of fuzzy mathematics. In the last sixty years sevral generalizations of \mathcal{FS} s and fuzzy topology was appeared in the literature. Intuitionistic fuzzy sets $(I\mathcal{F}Ss)$ introduced by Atanassov[1] is a generalization of \mathcal{FS} s characterised by membership and non-membership functions from an universe of discourse to closed interval [0,1] whose sum lies between 0 and 1 for each point of universe of discourse. In 1987 Coker [4], created the notion of intuitionistic fuzzy topology. Coker and his coworkers [5, 6], Thakur and his associates [13–16], Lupianez [8] and others are contributed in the development of intuitionistic fuzzy topology. In 2013 Yager [18] introduced Pythagorean fuzzy sets (\mathcal{PFS} s) characterized by a membership degree and a nonmembership degree whose square sum is less than or equal to one. The collection of

Abbreviation	Description	Abbreviation	Description
\mathcal{FS}	Fuzzy set	$I\mathcal{FS}$	Intuitionistic fuzzy set
\mathcal{PFS}	Pythagorean fuzzy set	\mathcal{FFS}	Fermatean fuzzy set
$\mathcal{FFS}(\mathbb{P})$	Family of \mathcal{FFS} s of \mathbb{P}	$\mathcal{F}\mathcal{F}\mathcal{T}$	Fermatean fuzzy topology
\mathcal{FFTS}	Fermatean fuzzy topological space	$\mathcal{F}\mathcal{F}\mathcal{O}$	Fermatean fuzzy open
\mathcal{FFC}	Fermatean fuzzy closed	$\mathcal{FFC}(\mathbb{P})$	Family of \mathcal{FFC} sets of \mathbb{P}
$\mathcal{F}\mathcal{F}\mathcal{R}\mathcal{O}$	Fermatean fuzzy regular open	$\mathcal{FFRO}(\mathbb{P})$	Family of \mathcal{FFRO} sets of \mathbb{P}
\mathcal{FFRC}	Fermatean fuzzy regular closed	$\mathcal{FFRCS}(\mathbb{P})$	Family of \mathcal{FFRC} sets of \mathbb{P}
$\mathcal{F}\mathcal{F}\mathcal{P}$	Fermatean fuzzy point	$\mathcal{F}\mathcal{F}\mathcal{F}\mathcal{B}$	Fermatean fuzzy filter base
\mathcal{FFN}	Fermatean fuzzy net	$\mathcal{F}\mathcal{F}\mathcal{A}$	Fermatean fuzzy adherent
FFSS	Fermatean fuzzy sub space	\mathcal{FFC} -compact	Fermatean fuzzy C-compact

TABLE 1. Abbreviations and their descriptions

all \mathcal{PFS} s on a universe of discourse contains the collection of all IFSs, but reverse containments is not true. Obviously, \mathcal{PFS} s are more effective than $I\mathcal{FS}$ s. Peng and Yang [10], studied Some more results for PFSs. In 2019, Olgun and his coworkers [9] introduced pythagorean fuzzy topological spaces and studied continuity and some important pythagorean fuzzy topological concepts. In 2020 Senapati and Yager[11] created the concept of Fermatean fuzzy sets $(\mathcal{FFS}s)$ as a generalization of $\mathcal{PFS}s$. In another paper they [12] defined some new operations over \mathcal{FFS} s and presented their applications in multi-criteria decision making. Recently Ibrahim [2] created fermaten fuzzy topological spaces as an extension of pythagorean fuzzy topological spaces and studied Fermatean fuzzy continuity and Fermatean fuzzy separation axioms. The study of C-compactness in topology wae initiated by Viglino [17] in 1969. Herrington and Long [7] gave some characterizations of C-compact spaces. The organization of paper is as follows. Section 2 is preliminary and review the basic concepts of Fermatean fuzzy sets and Fermatean fuzzy topology. Section 3 created Fermatean fuzzy nets and Fermatean fuzzy filters and studied their r-convergence. Section 4 defined and characterized Fermatean fuzzy C-compact spaces.

2. Preliminaries

DEFINITION 2.1. Let \mathbb{P} be an universal set. An structure of the form $\mathcal{M} = \{ < p, \varrho_{\mathcal{M}}(p), \sigma_{\mathcal{M}}(p) >: p \in \mathbb{P} \}$ is called:

- (a) Intuitionistic fuzzy set($I\mathcal{F}S$)[1] if $0 \le \varrho_{\mathcal{M}}(p) + \sigma_{\mathcal{M}}(p) \le 1 \ \forall p \in \mathbb{P}$;
- (a) Pythagorean fuzzy set(\mathcal{PFS})[18] if $0 \le \rho_{\mathcal{M}}(p) + \sigma_{\mathcal{M}}(p) \le 1 \ \forall p \in \mathbb{P}$;
- (a) Fermatean fuzzy set(\mathcal{FFS})[11] if $0 \le \varrho_{\mathcal{M}}(p) + \sigma_{\mathcal{M}}(p) \le 1 \ \forall p \in \mathbb{P}$.

Where $\varrho_{\mathcal{M}}: \mathbb{P} \to [0,1]$ and $\sigma_{\mathcal{M}}: \mathbb{P} \to [0,1]$ are respectively called the membership and non membership function of \mathcal{M} . The collection of all \mathcal{FFS} s of \mathbb{P} will be denoted by $\mathcal{FFS}(\mathbb{P})$.

Remark 2.2. [11] Every IFS is a PFS and every PFS is a FFS, but the converse may not be true.

DEFINITION 2.3. [11] Let \mathbb{P} be an universe of discourse and $\mathcal{M} = \{ \langle p, \varrho_{\mathcal{M}}(p), \sigma_{\mathcal{M}}(p) \rangle : p \in \mathbb{P} \}$, $\mathcal{N} = \{ \langle p, \varrho_{\mathcal{N}}(p), \sigma_{\mathcal{N}}(p) \rangle : p \in \mathbb{P} \} \in \mathcal{FFS}(\mathbb{P})$. Then :

- (a) $\mathcal{M} \subseteq \mathcal{N}$ if $\varrho_{\mathcal{M}}(p) \leq \varrho_{\mathcal{N}}(p)$ and $\sigma_{\mathcal{M}}(p) \geq \sigma_{\mathcal{N}}(p) \ \forall p \in \mathbb{P}$.
- (b) $\mathcal{M} = \mathcal{N} \text{ if } \mathcal{M} \subseteq \mathcal{N} \text{ and } \mathcal{N} \subseteq \mathcal{M}.$
- (c) $\mathcal{M}^{c} = \{ \langle p, \sigma_{\mathcal{M}}(p), \varrho_{\mathcal{M}}(p) \rangle : p \in \mathbb{P} \}.$
- (d) $\mathcal{M} \cap \mathcal{N} = \{ \langle p, \varrho_{\mathcal{M}}(p) \land \varrho_{\mathcal{N}}(p), \sigma_{\mathcal{M}}(p) \lor \sigma_{\mathcal{N}}(p) >: p \in \mathbb{P} \}$
- (e) $\mathcal{M} \cup \mathcal{N} = \{ \langle p, \rho_{\mathcal{M}}(p) \vee \rho_{\mathcal{N}}(p), \sigma_{\mathcal{M}}(p) \wedge \sigma_{\mathcal{N}}(p) >: p \in \mathbb{P} \}.$
- (f) $\tilde{0} = \{ < p, 0, 1 > : p \in \mathbb{P} \}.$
- (g) $\tilde{1} = \{ < p, 1, 0 > : p \in \mathbb{P} \}.$

DEFINITION 2.4. [11] Let \mathbb{P} be an universe of discourse and $\{\mathcal{M}_k : k \in \Lambda\} \subseteq \mathcal{FFS}(\mathbb{P})$. Then:

- (a) $\cap \mathcal{M}_k = \{ \langle p, \wedge \varrho_{\mathcal{M}_k}(p), \vee \sigma_{\mathcal{M}_k}(p) \rangle : p \in \mathbb{P} \};$
- (b) $\bigcup \mathcal{M}_k = \{ \langle p, \bigvee \varrho_{\mathcal{M}_k}(p), \bigwedge \sigma_{\mathcal{M}_k}(p) \rangle : p \in \mathbb{P} \}.$

Definition 2.5. [2] A collection $\Omega \subseteq \mathcal{FFS}(\mathbb{P})$ is called a Fermatean fuzzy topology (\mathcal{FFT}) on \mathbb{P} if:

- (1) $\tilde{0}, \tilde{1} \in \Omega$.
- (2) $\mathcal{G}_1, \mathcal{G}_2 \in \Omega \Rightarrow \mathcal{G}_1 \cap \mathcal{G}_2 \in \Omega$.
- (3) $\{G_{\alpha} : \alpha \in \Lambda\} \subseteq \Omega \Rightarrow \bigcup_{\alpha \in \Lambda} \{G_{\alpha} : \alpha \in \Lambda\} \in \Omega.$

The structure (\mathbb{P}, Ω) is called a Fermatean fuzzy topological space (\mathcal{FFTS}) and each \mathcal{FFS} in Ω is called Fermatean fuzzy open (\mathcal{FFO}) set in \mathbb{P} . A \mathcal{FFS} \mathcal{M} is said to be Fermatean fuzzy closed (\mathcal{FFC}) if $\mathcal{M}^c \in \Omega$. The collection of all \mathcal{FFCS} sets in a \mathcal{FFTS} (\mathbb{P}, Ω) is denoted by $\mathcal{FFCS}(\mathbb{P})$.

DEFINITION 2.6. [2] Let (\mathbb{P}, Ω) be a \mathcal{FFTS} and $\mathcal{M} \in \mathcal{FFS}(\mathbb{P})$. Then the interior and closure of \mathcal{M} are defined by:

$$Cl(\mathcal{M}) = \bigcap \{ \mathcal{F} : \mathcal{F} \in \mathcal{FFCS}(\mathbb{P}) \text{ and } \mathcal{M} \subset \mathcal{F} \}.$$
$$Int(\mathcal{M}) = \bigcup \{ \mathcal{H} : \mathcal{H} \in \Omega \text{ and } \mathcal{H} \subseteq \mathcal{M} \}.$$

Theorem 2.7. [2] Let (\mathbb{P}, Ω) be a \mathcal{FFTS} and $\mathcal{M} \in \mathcal{FFS}(\mathbb{P})$. Then:

- (a) $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P}) \Leftrightarrow Cl(\mathcal{M}) = \mathcal{M}$.
- (b) $\mathcal{M} \in \Omega \Leftrightarrow Int(\mathcal{M}) = \mathcal{M}$.
- (c) $Cl(\mathcal{M}^c) = (Int(\mathcal{M}))^c$.
- (d) $Int(\mathcal{M}^c) = (Cl(\mathcal{M}))^c$.

DEFINITION 2.8. [2] Let $\mathbb P$ be a non-empty set and $p \in \mathbb P$ a fixed element in $\mathbb P$. Suppose $\zeta \in (0,1]$ and $\xi \in [0,1)$ are two fixed real numbers such that $\zeta^3 + \xi^3 \leq 1$. Then, a Fermatean fuzzy point $(\mathcal F\mathcal F\mathcal P)$ $x^p_{(\zeta,\xi)} = \{\langle p,\varrho_x(p),\sigma_x(p)\rangle\}$ is defined to be a $\mathcal F\mathcal F\mathcal S$ of $\mathbb P$ given by

$$x_{(\zeta,\xi)}^p(q) = \begin{cases} (\zeta,\xi) & \text{if } q = p\\ (0,1) & \text{otherwise }, \end{cases}$$

for $q \in \mathbb{P}$. In this case, p is called the support of $x^p_{(\zeta,\xi)}$. A \mathcal{FFP} $x^p_{(\zeta,\xi)}$ is said to belong to a $\mathcal{FFSF} = \{\langle p, \varrho_{\mathcal{F}}(p), \sigma_{\mathcal{F}}(p) \rangle\}$ of \mathbb{P} denoted by $x^p_{(\zeta,\xi)} \in \mathcal{F}$ if $\zeta \leq \varrho_{\mathcal{F}}(p)$ and $\xi \geq \sigma_{\mathcal{F}}(p)$. Two \mathcal{FFP} s are said to be distinct if their supports are distinct. The set of all \mathcal{FFP} s of \mathbb{P} will be denoted by $\mathcal{FFP}(\mathbb{P})$.

THEOREM 2.9. [2] Let $\mathcal{M}_1 = \{\langle p, \varrho_{\mathcal{M}_1}(p), \sigma_{\mathcal{M}_1}(p) \rangle\}$ and $\mathcal{M}_2 = \{\langle p, \varrho_{\mathcal{M}_2}(p), \sigma_{\mathcal{M}_2}(p) \rangle\}$ be two \mathcal{FFS} s of \mathbb{P} . Then, $\mathcal{M}_1 \subset \mathcal{M}_2$ if and only if $x_{(\zeta,\xi)}^p \in \mathcal{M}_1$ implies $x_{(\zeta,\xi)}^p \in \mathcal{M}_2$ for any \mathcal{FFP} $x_{(\zeta,\xi)}^p$ in \mathbb{P} .

DEFINITION 2.10. Two \mathcal{FFS} s \mathcal{M} and \mathcal{N} of \mathbb{P} are said to be q-coincident $(\mathcal{M}_q\mathcal{N})$ if \exists an element $p \in \mathbb{P}$ such that $\varrho_{\mathcal{M}}(p) > \sigma_{\mathcal{N}}(p)$ or $\sigma_{\mathcal{M}}(p) < \varrho_{\mathcal{N}}(p)$.

Theorem 2.11. If \mathcal{M} is a crisp set and \mathcal{N} is any \mathcal{FFS} of a non empty set \mathbb{P} . Then $\mathcal{M} \cap \mathcal{N} = \tilde{0} \Leftrightarrow \mathcal{M} \subset \mathcal{N}^c$.

DEFINITION 2.12. [2] Let \mathbb{P} and \mathbb{Q} be two non-empty sets and $\varphi: \mathbb{P} \to \mathbb{Q}$ be a mapping. Let \mathcal{M} and \mathcal{N} be \mathcal{FFS} s of \mathbb{P} and \mathbb{Q} , respectively. Then:

(a) The membership and non-membership functions of image of \mathcal{M} with respect to φ that is denoted by $\varphi(\mathcal{M})$ are defined by

$$\varrho_{\varphi(\mathcal{M})}(q) = \begin{cases} \sup_{r \in \varphi^{-1}(q)} \varrho_{\mathcal{M}}(r) & \text{if } \varphi^{-1}(q) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

and

$$\sigma_{\varphi(\mathcal{M})}(q) = \begin{cases} \inf_{r \in \varphi^{-1}(q)} \sigma_{\mathcal{M}}(r) & \text{if } \varphi^{-1}(q) \neq \phi \\ 1 & \text{otherwise} \end{cases}$$

respectively.

(b) The membership and non-membership functions of pre-image of \mathcal{N} with respect to φ that is denoted by $\varphi^{-1}(\mathcal{N})$ are respectively defined by $\varrho_{\varphi^{-1}(\mathcal{N})}(p) = \varrho_{\mathcal{N}}(\varphi(p))$ and $\sigma_{\varphi^{-1}(\mathcal{N})}(p) = \sigma_{\mathcal{N}}(\varphi(p))$.

Definition 2.13. [2] A mapping $\varphi: (\mathbb{P}, \Omega \to (\mathbb{Q}, \Gamma))$ is called Fermatean fuzzy continuous if $\varphi^{-1}(\mathcal{M}) \in \Omega$, $\forall \mathcal{M} \in \Gamma$.

3. Fermatean fuzzy filters

Definition 3.1. Let \mathbb{P} be an universe of discourse. A nonempty family $\mathfrak{F} \subseteq \mathcal{FFS}(\mathbb{P})$ is called a Fermatean fuzzy filter base (\mathcal{FFFB}) in \mathbb{P} if:

- (a) $\tilde{0} \notin \mathfrak{F}$;
- (b) $\mathcal{F}_1 \cap \mathcal{F}_2 \in \mathfrak{F}, \forall \mathcal{F}_1, \mathcal{F}_2 \in \mathfrak{F};$
- (c) $\mathcal{F}_1 \in \mathfrak{F}$ and $\mathcal{F}_1 \subseteq \mathcal{F}_2 \Rightarrow \mathcal{F}_2 \in \mathfrak{F}$, $\forall \mathcal{F}_1, \mathcal{F}_2 \in \mathfrak{F}$.

DEFINITION 3.2. Let (\mathbb{P},Ω) be a \mathcal{FFTS} and $\mathcal{N} \in \mathcal{FFS}(\mathbb{P})$. Then \mathcal{N} is called an ϵ -neighbourhood of a \mathcal{FFP} $x_{(\zeta,\xi)}^p$ of \mathbb{P} if $\exists \ \mathcal{G} \in \Omega$ such that $x_{(\zeta,\xi)}^p \in \mathcal{G} \subseteq \mathcal{N}$. The family of all an ϵ neighbourhood of $x_{(\zeta,\xi)}^p$ is denoted by $\mathfrak{N}(x_{(\zeta,\xi)}^p)$.

DEFINITION 3.3. Let $\mathbb P$ be a non empty set and $\mathbb D$ is a directed set. A map $\phi: \mathbb D \to \mathcal{FFP}(\mathbb P)$ is called a Fermatean fuzzy $\operatorname{net}(\mathcal{FFN})$. We will write $\phi_d = \phi(d)$ (for $d \in \mathbb D$), $\phi = (\phi_d)_{d \in \mathbb D}$.

DEFINITION 3.4. Let (\mathbb{P}, Ω) be a \mathcal{FFTS} and \mathcal{M} be a non empty crisp set of \mathbb{P} , let $\mathfrak{F} = \{M_{\alpha} \subset \mathcal{M} : \alpha \in \Delta\}$ be a \mathcal{FFFB} in \mathcal{M} Then :

- (a) \mathcal{FFFB} \mathfrak{F} is called r-converges to a \mathcal{FFP} $x^p_{(\zeta,\xi)} \in \mathcal{M}$ (written as $\mathfrak{F} \to x^p_{(\zeta,\xi)}$), if $\forall \ \mathcal{N} \in \mathfrak{N}(x^p_{(\zeta,\xi)}) \ \exists \ \mathcal{M}_{\alpha} \in \mathfrak{F}$ such that $\mathcal{M}_{\alpha} \subset Cl(\mathcal{N})$.
- (b) \mathcal{FFFB} \mathfrak{F} is called *r*-accumulates to a \mathcal{FFP} $x_{(\zeta,\xi)}^p \in \mathcal{M}$ (written as $\underset{r}{\propto} x_{(\zeta,\xi)}^p$), if $\forall \ \mathcal{N} \in \mathfrak{N}(x_{(\zeta,\xi)}^p)$ and each $\mathcal{M}_{\alpha} \in \mathfrak{F}$, $\mathcal{M}_{\alpha} \cap Cl(\mathcal{N}) \neq \tilde{0}$.

Theorem 3.5. Let (\mathbb{P}, Ω) be a \mathcal{FFTS} , $\mathcal{M} \subset \mathbb{P}$ and $x^p_{(\zeta,\xi)} \in \mathcal{FFP}(\mathbb{P})$.

- (a) Let \mathfrak{F} is a \mathcal{FFFB} in \mathcal{M} . If $\mathfrak{F} \to x^p_{(\zeta,\xi)} \in \mathcal{M}$, then $\mathfrak{F} \propto x^p_{(\zeta,\xi)}$.
- (b) Let \mathfrak{F}_1 and \mathfrak{F}_2 be two \mathcal{FFFB} in \widetilde{M} and \mathfrak{F}_2 is stronger than $\mathfrak{F}_1(\mathfrak{F}_1 \subset \mathfrak{F}_2)$. If $\mathfrak{F}_2 \underset{r}{\propto} x^p_{(\zeta,\xi)} \in \mathcal{M}$, then $\mathfrak{F}_1 \underset{r}{\propto} x^p_{(\zeta,\xi)}$.
- (c) Let \mathfrak{M} be a maximal \mathcal{FFFB} in \mathcal{M} . Then $\mathfrak{F} \propto x_{(\zeta,\xi)}^p \in \mathcal{M} \Leftrightarrow \mathfrak{F} \to x_{(\zeta,\xi)}^p$

Proof. Obvious and left to the readers.

DEFINITION 3.6. Let (\mathbb{P}, Ω) be a \mathcal{FFTS} and \mathcal{M} be a non empty crisp subset of \mathbb{P} . Suppose \mathbb{D} is a directed set and $\phi : \mathbb{D} \to \mathcal{FFP}(\mathcal{M})$ is a \mathcal{FFN} . then:

- (a) ϕ is called r-converges to a \mathcal{FFP} $x_{(\zeta,\xi)}^p \in \mathcal{M}(\text{ written as } \phi \to x_{(\zeta,\xi)}^p)$ if $\forall \ \mathcal{V} \in \Omega$ containing $x_{(\zeta,\xi)}^p$, $\exists \ b \in \mathbb{D}$ such that $\phi(T_b) \subset Cl(\mathcal{V})$. Where $\mathcal{T}_b = \{c \in \mathbb{D} : c \geq b\}$.
- (b) ϕ called r-accumulates to a \mathcal{FFP} $x_{(\zeta,\xi)}^p \in \mathcal{M}$ (written as $\phi \underset{r}{\propto} x_{(\zeta,\xi)}^p$) if $\forall \ \mathcal{V} \in \Omega$ containing $x_{(\zeta,\xi)}^p$, and $\forall \ b \in \mathbb{D}$ such that $\phi(\mathcal{T}_b) \cap Cl(\mathbb{V}) \neq \tilde{0}$. Where $\mathcal{T}_b = \{c \in \mathbb{D} : c \geq b\}$.

DEFINITION 3.7. If $\phi : \mathbb{D} \to \mathcal{FFP}(\mathcal{M})$ is a \mathcal{FFN} in $\mathcal{M} \subset \mathbb{P}$. Then the family $\mathfrak{F}(\phi) = \{\phi(\mathcal{T}_b) : c \in \mathbb{D}\}$ is a \mathcal{FFFB} in \mathcal{M} called a \mathcal{FFFB} associated to ϕ .

THEOREM 3.8. Let (\mathbb{P}, Ω) be a FFTS. If $\mathfrak{F}(\phi)$ is a FFFB in $\mathcal{M} \subset \mathbb{P}$ associated to FFN ϕ . Then

- (a) $\mathfrak{F}(\phi) \to x_{(\zeta,\xi)}^p \in \mathcal{M} \Leftrightarrow \phi \to x_{(\zeta,\xi)}^p$.
- (b) $\mathfrak{F}(\phi) \propto x^p_{(\zeta,\xi)} \in \mathcal{M} \Leftrightarrow \phi \propto x^p_{(\zeta,\xi)}.$

Proof. Obvious.

DEFINITION 3.9. Let $\mathbb P$ be a non empty set and $\mathcal M$ be a crisp subset of $\mathbb P$. Let $\mathfrak F$ be a $\mathcal F\mathcal F\mathcal F\mathcal B$ in $\mathbb P$ then consider the family $\mathbb D_{\mathfrak F}=\{(x^p_{(\zeta,\xi)},\mathfrak F):x^p_{(\zeta,\xi)}\in\mathcal F\mathcal F\mathcal P(\mathcal M),x^p_{(\zeta,\xi)}\in\mathcal F,\mathcal F\in\mathfrak F\}$ with the relation $(x^p_{(\zeta,\xi)},\mathcal F)\leq (x^{p'}_{(\zeta,\xi)},\mathcal F')\Leftrightarrow\mathcal F'\subseteq\mathcal F$. Then the

 \mathcal{FFN} $\phi_{\mathfrak{F}}: \mathbb{D}_{\mathfrak{F}} \to \mathcal{FFP}(\mathcal{M})$ such that $\phi_{\mathfrak{F}}(x^p_{(\zeta,\xi)},\mathcal{F}) = x^p_{(\zeta,\xi)}$ is called called \mathcal{FFN} associate to \mathfrak{F} .

Theorem 3.10. In a FFTS (\mathbb{P}, Ω) , If $\phi_{\mathfrak{F}}: \mathbb{D} \to \mathcal{FFP}(\mathcal{M})$ is a FFN in $\mathcal{M} \subset \mathbb{P}$ associated to a FFFB \mathfrak{F} . then:

- (a) $\mathfrak{F} \to x^p_{(\zeta,\xi)} \in \mathcal{M} \Leftrightarrow \phi_{\mathfrak{F}} \to x^p_{(\zeta,\xi)}$.
- (b) $\mathfrak{F} \propto x_{(\zeta,\xi)}^p \in \mathcal{M} \Leftrightarrow \phi_{\mathfrak{F}} \propto x_{(\zeta,\xi)}^p$.

PROOF. (a) Necessity. Since \mathfrak{F} r-converges to $x^p_{(\zeta,\xi)}$ in \mathcal{M} , $\forall \mathcal{N} \in \mathfrak{R}(x^p_{(\zeta,\xi)}) \; \exists \mathcal{M}_{\alpha} \in \mathfrak{F}$ such that $\mathcal{M}_{\alpha} \subset Cl(\mathcal{N})$. For every $\mathcal{FFP} \; x^q_{(\zeta,\xi)}$ such that $x^q_{(\zeta,\xi)} \in \mathcal{M}_{\alpha}$, $(x^q_{(\zeta,\xi)}, \mathcal{M}_{\alpha}) \in \mathbb{D}_{\mathfrak{F}}$. If $(x^{q'}_{(\zeta,\xi)}, \mathcal{M}_{\beta}) \in \mathbb{D}_{\mathfrak{F}}$ and $(x^{q'}_{(\zeta,\xi)}, \mathcal{M}_{\beta}) \geq (x^q_{(\zeta,\xi)}, \mathcal{M}_{\alpha})$ then $x^{q'}_{(\zeta,\xi)} \in \mathcal{M}_{\beta}$ and $\mathcal{M}_{\beta} \subset \mathcal{M}_{\alpha}$. Thus $\phi_{\mathfrak{F}}(x^{q'}_{(\zeta,\xi)}, \mathcal{M}_{\beta}) = x^{q'}_{(\zeta,\xi)} \in \mathcal{M}_{\alpha} \subset Cl(\mathcal{N})$. Hence $\phi_{\mathfrak{F}} \to x^p_{(\zeta,\xi)}$.

Sufficiency. Since $\phi_{\mathfrak{F}}$ r-converges to $x_{(\zeta,\xi)}^{p}$ in \mathcal{M} , $\forall \ \mathcal{N} \in \mathfrak{N}(x_{(\zeta,\xi)}^{p}) \ \exists \ (x_{(\zeta,\xi)}^{q_0}, \mathcal{M}_0) \in \mathbb{D}_{\mathfrak{F}}$ such that $\phi_{\mathfrak{F}}(x_{(\zeta,\xi)}^{q}, \mathcal{M}_{\alpha}) = x_{(\zeta,\xi)}^{q} \in \mathcal{M}_{\alpha} \subset Cl(\mathcal{N}) \ \forall \ (x_{(\zeta,\xi)}^{q}, \mathcal{M}_{\alpha}) \geq (x_{(\zeta,\xi)}^{q_0}, \mathcal{M}_0).$ This implies that $\mathcal{M}_0 \subset \mathcal{M}_{\alpha}$ because $\forall \ \mathcal{FFP} \ x_{(\zeta,\xi)}^{q}$ in $\mathbb{P} \ x_{(\zeta,\xi)}^{q} \in \mathcal{M}_0$ we have $(x_{(\zeta,\xi)}^{q}, \mathcal{M}_0) \geq (x_{(\zeta,\xi)}^{q_0}, \mathcal{M}_0), \ x_{(\zeta,\xi)}^{q} \in \mathcal{M}_{\alpha}.$ Consequently, $\mathcal{M}_0 \subset Cl(\mathcal{N})$. Hence, $\mathfrak{F} \to x_{(\zeta,\xi)}^{p} \in \mathcal{M}$.

(b) Necessity. Since \mathfrak{F} r-accumulates to $x^p_{(\zeta,\xi)}$ in \mathcal{M} , $\forall \mathcal{N} \in \mathfrak{N}(x^p_{(\zeta,\xi)}) \exists \mathcal{M}_{\alpha} \in \mathfrak{F}$ such that $\mathcal{M}_{\alpha} \cap Cl(\mathcal{N}) \neq \tilde{0}$. For every \mathcal{FFP} $x^q_{(\zeta,\xi)}$ such that $x^q_{(\zeta,\xi)} \in \mathcal{M}_{\alpha}$, $(x^q_{(\zeta,\xi)}, \mathcal{M}_{\alpha}) \in \mathbb{D}_{\mathfrak{F}}$ and $(x^{q'}_{(\zeta,\xi)}, \mathcal{M}_{\beta}) \geq (x^q_{(\zeta,\xi)}, \mathcal{M}_{\alpha})$ then $(x^{q'}_{(\zeta,\xi)} \in \mathcal{M}_{\beta}) \cap Cl(\mathcal{N}) \neq \tilde{0}$. Hence, $\phi_{\mathfrak{F}} \propto x^p_{(\zeta,\xi)}$.

Sufficiency. Since $\phi_{\mathfrak{F}}$ r-accumulates to $x_{(\zeta,\xi)}^{p}$ in \mathcal{M} , $\forall \ \mathcal{N} \in \mathfrak{N}(x_{(\zeta,\xi)}^{p}) \ \exists \ (x_{(\zeta,\xi)}^{q_{0}}, \mathcal{M}_{0}) \in \mathbb{D}_{\mathfrak{F}}$ such that $\phi_{\mathfrak{F}}(x_{(\zeta,\xi)}^{q}, \mathcal{M}_{\alpha}) = x_{(\zeta,\xi)}^{q} \in \mathcal{M}_{\alpha}$ and $\phi_{\mathfrak{F}}(x_{(\zeta,\xi)}^{q}, \mathcal{M}_{\alpha}) \cap Cl(\mathcal{N}) \neq \tilde{0}, \ \forall \ (x_{(\zeta,\xi)}^{q}, \mathcal{M}_{\alpha}) \geq (x_{(\zeta,\xi)}^{q_{0}}, \mathcal{M}_{0})$. This implies that $\mathcal{M}_{0} \subset \mathcal{M}_{\alpha}$ because $\forall \ \mathcal{FFP} \ x_{(\zeta,\xi)}^{q}$ in $\mathbb{P} \ x_{(\zeta,\xi)}^{q} \in \mathcal{M}_{0}$ we have $(x_{(\zeta,\xi)}^{q}, \mathcal{M}_{0}) \geq (x_{(\zeta,\xi)}^{q_{0}}, \mathcal{M}_{0}), \ x_{(\zeta,\xi)}^{q} \in \mathcal{M}_{\alpha}$. Consequently, $\mathcal{M}_{\alpha} \cap Cl(\mathcal{N}) \neq \tilde{0}$. Hence, $\mathfrak{F} \simeq x_{(\zeta,\xi)}^{p}$ in \mathcal{M} .

4. Fermatean fuzzy C-compactness

Definition 4.1. A family $\{\mathcal{G}_{\alpha}: \alpha \in \Lambda\}$ of \mathcal{FFFS} s of a \mathcal{FFFTS} (\mathbb{P}, Ω) is called a Fermatean fuzzy cover of \mathbb{P} if $\tilde{\mathbb{I}} = \bigcup_{\alpha \in \Lambda} \{\mathcal{G}_{\alpha}\}.$

DEFINITION 4.2. A \mathcal{FFTS} (\mathbb{P}, Ω) is called Fermatean fuzzy compact if every \mathcal{FFO} cover of \mathbb{P} has a finite sub cover.

DEFINITION 4.3. A \mathcal{FFTS} (\mathbb{P}, Ω) is said to be Fermatean fuzzy C-compact(\mathcal{FFC} -compact) if \forall proper \mathcal{FFC} crisp set \mathcal{M} of (\mathbb{P}) and \forall \mathcal{FFO} cover { $\mathcal{G}_{\alpha}: \alpha \in \Lambda$ } of \mathcal{M} , \exists a finite number of elements $\mathcal{G}_{\alpha_1}, \mathcal{G}_{\alpha_2}, \mathcal{G}_{\alpha_3}, \dots \mathcal{G}_{\alpha_n}$ such that $\mathcal{M} \subset \bigcup_{i=1}^n \{Cl(\mathcal{G}_{\alpha_i})\}$.

Theorem 4.4. Let (\mathbb{P}, Ω) be a FFTS. If \mathbb{P} is Fermatean fuzzy compact then it is FFC- compact.

Proof. Easy and left to the readers.

Definition 4.5. A $\mathcal{FFS} \mathcal{M}$ in a \mathcal{FFTS} (\mathbb{P}, Ω) is called:

- (a) Fermatean fuzzy regular open (\mathcal{FFRO}) if $\mathcal{M} = Int(Cl(\mathcal{M}))$. The collection of all \mathcal{FFRO} sets of \mathbb{P} will be denoted by $\mathcal{FFROS}(\mathbb{P})$.
- (b) Fermatean fuzzy regular closed (\mathcal{FFRC}) if $\mathcal{M}^c \in \mathcal{FFROS}(\mathbb{P})$. The collection of all \mathcal{FFRC} sets of \mathbb{P} will be denoted by $\mathcal{FFRCS}(\mathbb{P})$.

Remark 4.6. In a FFTS (\mathbb{P}, Ω) , FFROS $(\mathbb{P}) \subset \Omega$ and FFRCS $(\mathbb{P}) \subset \mathcal{FFCS}(\mathbb{P})$, but the reverse containment may not be true.

Example Let $\mathbb{P} = \{p_1, p_2\}$ be an universe of discourse and $\Omega = \{\tilde{0}, \mathcal{M}, \tilde{1}\}$ be a \mathcal{FFT} on \mathbb{P} . Where, $\mathcal{M} = \{ < p_1, 0.8, 0.7 >, < p_2, 0.7, 0.8 > \}$. Then $\mathcal{M} \in \Omega$ (resp. $\mathcal{M}^c \in \mathcal{FFCS}(\mathbb{P})$) but $\mathcal{M} \notin \mathcal{FFROS}(\mathbb{P})$ (resp. $\mathcal{M}^c \notin \mathcal{FFRCS}(\mathbb{P})$).

Theorem 4.7. Let (\mathbb{P}, Ω) be a FFTS and $M \in \mathcal{FFS}(\mathbb{P})$. Then $Int(Cl(M)) \in \mathcal{FFROS}(\mathbb{P})$ and $Cl(Int(M)) \in \mathcal{FFRCS}(\mathbb{P})$.

THEOREM 4.8. In a $\mathcal{FFTS}(\mathbb{P},\Omega)$ the next statements are equivalent:

- (a) \mathbb{P} is \mathcal{FFC} -compact.
- (b) For each FFC crisp set \mathcal{M} of \mathbb{P} and each FFRO cover $\mathcal{G} = \{\mathcal{G}_{\alpha} : \alpha \in \Lambda\}$ of $\mathcal{M} = \mathcal{G}$ a finite number of elements $\mathcal{G}_{\alpha_1}, \mathcal{G}_{\alpha_2}, \mathcal{G}_{\alpha_3}, \dots \mathcal{G}_{\alpha_n}$ of \mathcal{G} such that $\mathcal{M} \subseteq \bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})$.
- (c) For each crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$ and for each collection $\mathcal{F} = \{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}$ of non empty \mathcal{FFRC} sets of \mathbb{P} such that $(\cap_{\alpha \in \Lambda} \mathcal{F}_{\alpha}) \cap \mathcal{M} = \tilde{0}$, \exists a finite number of elements $\mathcal{F}_{\alpha_1}, \mathcal{F}_{\alpha_2}, \mathcal{F}_{\alpha_3}, \dots \mathcal{F}_{\alpha_n}$ of \mathcal{F} such that $(\bigcap_{i=1}^n Int(\mathcal{F}_{\alpha_i})) \cap \mathcal{M} = \tilde{0}$.
- (d) For each crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$ and for each collection $\mathcal{F} = \{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}$ of \mathcal{FFRC} sets of \mathbb{P} , if for each finite subcollection $\{\mathcal{F}_{\alpha_1}, \mathcal{F}_{\alpha_2}, \mathcal{F}_{\alpha_3}, \cdots \mathcal{F}_{\alpha_n}\}$, of \mathcal{F} has the property that $\bigcap_{i=1}^n (Int(\mathcal{F}_{\alpha_i})) \cap \mathcal{M} \neq \tilde{0}$, then $(\cap_{\alpha \in \Lambda} \mathcal{F}_{\alpha}) \cap \mathcal{M} \neq \tilde{0}$.
- (e) For each crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$ and each \mathcal{FFFB} $\mathfrak{F} = \{\mathcal{M}_{\alpha} : \alpha \in \Lambda\}$ in $\mathcal{M} \exists a \mathcal{FFP} x_{(\zeta,\xi)}^p \in \mathcal{M} \text{ such that } \mathfrak{F} \subseteq x_{(\zeta,\xi)}^p$.
- (f) For each crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$ and each maximal $\mathcal{FFFB} \mathfrak{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Lambda\}$ in $\mathcal{M} \exists a \mathcal{FFP} x_{(\zeta,\xi)}^p \in \mathcal{M}$ such that $\mathfrak{M} \simeq x_{(\zeta,\xi)}^p$.

PROOF. (a) \Rightarrow (b) Follows easily from Definition 4.3 and Remark 4.6.

(b) \Rightarrow (a). Suppose (b) holds.Let $\{\mathcal{G}_{\alpha}: \alpha \in \Lambda\}$ be a \mathcal{FFO} cover of a crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$. Then by thm $\{Int(Cl(\mathcal{G}_{\alpha})): \alpha \in \Lambda\}$. will be \mathcal{FFRO} cover of \mathcal{M} . Therefore, by (b) \exists a finite sub collection $\{Int(Cl(\mathcal{G}_{\alpha_i})): i = 1, 2, 3 \dots n\}$ such that $\mathcal{M} \subset \bigcup_{i=1}^n Cl(Int(Cl(\mathcal{G}_{\alpha_i}))) = \bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})$. Consequently, $\mathcal{M} \subset \bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})$ and \mathbb{P} is \mathcal{FFC} -compact.

(b) \Rightarrow (c). Let \mathcal{M} be a crisp \mathcal{FFCS} of \mathbb{P} . Let $\mathcal{F} = \{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}$ be a collection of non empty \mathcal{FFRC} sets of \mathbb{P} such that $(\cap \{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}) \cap \mathcal{M} = \tilde{0}$ for each proper

- crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$. Then $\mathcal{U} = \{\mathcal{F}_{\alpha}^c : \alpha \in \Lambda\}$ is \mathcal{FFRO} cover of crisp set $\mathcal{MFFCS}(\mathbb{P})$. Therefore \exists a finite sub collection $\{\mathcal{G}_{\alpha_i} = \mathcal{F}_{\alpha_i}^c : i = 1, 2, 3 \dots n\}$ of \mathcal{U} such that $\mathcal{M} \subset \bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})$. Now for each α_i we have, $Int(\mathcal{F}_{\alpha_i}) = Int(\mathcal{G}_{\alpha_i}^c) = (Cl(\mathcal{G}_{\alpha_i}^c)^c)^c = Cl(\mathcal{G}_{\alpha_i}^c)$. Therefore $\bigcap_{i=1}^n Int(\mathcal{F}_{\alpha_i}) = \bigcup_{i=1}^n (Cl(\mathcal{G}_{\alpha_i}))^c = \mathcal{M}^c$. This shows that $\bigcap_{i=1}^n (Int(\mathcal{F}_{\alpha_i})) \cap \mathcal{M} = \mathcal{M}^c \cap \mathcal{M} = \tilde{0}$, because \mathcal{M} is a crisp set of \mathbb{P} .
- (c) \Rightarrow (b). Let $\mathcal{U} = \{\mathcal{G}_{\alpha} : \alpha \in \Lambda\}$ be a \mathcal{FFRO} cover of a proper crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$. Therefore, $\mathcal{M} \subset \bigcup_{\alpha \in \Lambda} \mathcal{G}_{\alpha}$. It follows that $\mathcal{M}^c \supseteq (\bigcup_{\alpha \in \Lambda} \mathcal{G}_{\alpha})^c = \bigcap_{\alpha \in \Lambda} \mathcal{G}_{\alpha}^c$. And so, $(\bigcap_{\alpha \in \Lambda} \mathcal{G}_{\alpha}^c) \cap \mathcal{M} \subset \mathcal{M}^c \cap \mathcal{M} = \tilde{0}$, because \mathcal{M} is a crisp set of \mathbb{P} . Therefore $\mathcal{F} = \{\mathcal{G}_{\alpha}^c : \alpha \in \Lambda\}$ is a collection of non empty \mathcal{FFRCS} s of \mathbb{P} , satisfying $(\bigcap_{\alpha \in \Lambda} \mathcal{F}) \cap \mathcal{M} = \tilde{0}$. And so by (c), \exists a finite sub collection $\{\mathcal{G}_{\alpha_i}^c : i = 1, 2, 3 \dots n\}$ of \mathcal{F} such that $\bigcap_{i=1}^n (Int(\mathcal{G}_{\alpha_i}^c)) \cap \mathcal{M} = \tilde{0}$. It follows that, $\mathcal{M} \subset \bigcup_{i=1}^n (Int(\mathcal{G}_{\alpha_i}^c))^c$. Now for each α_i we have, $Int(\mathcal{G}_{\alpha_i}^c) = (Cl(\mathcal{G}_{\alpha_i}^c)^c)^c = Cl(\mathcal{G}_{\alpha_i})^c$. Therefore, we obtain that $\mathcal{M} \subset \bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})$.
- (c) \Rightarrow (d). Let \mathcal{M} be a crisp \mathcal{FFC} set of \mathbb{P} . Let $\mathcal{F} = \{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}$ be a collection of non empty \mathcal{FFRC} sets of \mathbb{P} such that for every finite subcollection $\{\mathcal{F}_{\alpha_1}, \mathcal{F}_{\alpha_2}, \mathcal{F}_{\alpha_3}, \dots \mathcal{F}_{\alpha_n}\}$ of \mathcal{F} we have $\bigcap_{i=1}^n Int(\mathcal{F}_{\alpha_i}) \cap \mathcal{M} \neq \tilde{0}$. We want to show that $(\cap \mathcal{F}_{\alpha}) \cap \mathcal{M} \neq \tilde{0}$. If $(\cap \mathcal{F}_{\alpha}) \cap \mathcal{M} = \tilde{0}$, Then by (c), \exists a finite family $\{\mathcal{F}_{\alpha_1}, \mathcal{F}_{\alpha_2}, \mathcal{F}_{\alpha_3}, \dots \mathcal{F}_{\alpha_n}\}$, such that $\bigcap_{i=1}^n Int(\mathcal{F}_{\alpha_i}) \cap \mathcal{M} = \tilde{0}$, which is a contradiction. Hence $(\cap \mathcal{F}_{\alpha}) \cap \mathcal{M} \neq \tilde{0}$.
- (d) \Rightarrow (c). Le \mathcal{M} be a crisp \mathcal{FFC} set of \mathbb{P} and $\mathcal{F} = \{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}$ be a collection of non empty \mathcal{FFRC} sets of \mathbb{P} such that $(\cap \mathcal{F}_{\alpha_i}) \cap \mathcal{M} = \tilde{0}$. We have to show that \exists a finite integer (say) n such that $\bigcap_{i=1}^n int(\mathcal{F}_{\alpha_i}) \cap \mathcal{M} = \tilde{0}$. Suppose now that for every finite integer n we have $\bigcap_{i=1}^n Int(\mathcal{F}_{\alpha_i}) \cap \mathcal{M} \neq \tilde{0}$. Then by (d) we have $(\cap \mathcal{F}_{\alpha}) \cap \mathcal{M} \neq \tilde{0}$ which is a contradiction.
- (a) \Rightarrow (e). Suppose $\exists \ \mathcal{FFFB} \ \mathfrak{F} = \{\mathcal{M}_{\alpha} : \alpha \in \Lambda\}$ in \mathcal{M} , such that $\mathfrak{F} \underset{r}{\propto} x_{(\zeta,\xi)}^p$ for all $\mathcal{FFP} x_{(\zeta,\xi)}^p \in \mathcal{M}$. Then $\forall \ x_{(\zeta,\xi)}^p \in \mathcal{M} \ \exists \ \mathcal{N}(x_{(\zeta,\xi)}^p) \in \Omega$ and some $\mathcal{M}_{\alpha(x_{(\zeta,\xi)}^p)} \in \mathfrak{F}$ such that $\mathcal{M}_{\alpha(x_{(\zeta,\xi)}^p)} \cap Cl(\mathcal{N}(x_{(\zeta,\xi)}^p)) = \tilde{0}$. The collection $\{\mathcal{N}(x_{(\zeta,\xi)}^p) : x_{(\zeta,\xi)}^p \in \mathcal{M}\}$ is a \mathcal{FFO} cover of \mathcal{M} , so by (a) \exists a finite sub collection $\{\mathcal{N}(x_{(\zeta,\xi)}^p) : i = 1,2,3,\ldots,n\}$ such that $\mathcal{M} \subset \bigcup_{i=1}^n Cl(\mathcal{N}(x_{(\zeta_i,\xi_i)}^p))$. Let $\mathcal{M}_{\alpha_0} \in \mathfrak{F}$ such that $\mathcal{M}_{\alpha_0} \subset \bigcap_{i=1}^n \mathcal{M}_{\alpha(x_{(\zeta_i,\xi_i)}^p)}$. Since $\mathcal{M}_{\alpha_0} \neq \tilde{0}$ there is some $1 \leq j \leq n$ such that $\mathcal{M}_{\alpha_0} \cap Cl(\mathcal{N}(x_{(\zeta_j,\xi_j)}^p)) \neq \tilde{0}$. This implies that $\mathcal{M}_{\alpha(x_{(\zeta_i,\xi_i)}^p)} \cap Cl(\mathcal{N}(x_{(\zeta_i,\xi_i)}^p)) \neq \tilde{0}$ which is a contradiction .
- (e) \Rightarrow (d). Suppose \exists a crisp $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$ and a collection $\{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}$ of \mathcal{FFRC} sets of \mathcal{P} such that each finite subcollection $\{\mathcal{F}_{\alpha_i} : i = 1, 2, 3, \dots, n\}$ has a property that $(\cap_{i=1}^n Int(\mathcal{F}_{\alpha_i})) \cap \mathcal{M} \neq \tilde{0}$, but $(\cap_{\alpha} F_{\alpha}) \cap \mathcal{M} = \tilde{0}$. Then $(Int(\mathcal{F}_{\alpha_i})) \cap \mathcal{M}$, $\alpha \in \Lambda$, together with all finite intersection of the form $\cap_{i=1}^n (Int(\mathcal{F}_{\alpha_i})) \cap \mathcal{M}$, form a \mathcal{FFFB} \mathfrak{F} in \mathcal{M} . Then by (e) \mathfrak{F} r-accumulates to some \mathcal{FFP} $x_{(\zeta,\xi)}^p \in \mathcal{M}$. Thus $\forall \mathcal{N}(x_{(\zeta,\xi)}^p)$ containing $x_{(\zeta,\xi)}^p$ and each $Int(\mathcal{F}_{\alpha})$, $Cl(\mathcal{N}(x_{(\zeta,\xi)}^p)) \cap (Int(\mathcal{F}_{\alpha}) \cap \mathcal{M}) \neq \tilde{0}$. The fact $\mathcal{F}_{\alpha} \cap \mathcal{M} \neq \tilde{0}$, $\forall \alpha \in \Lambda$ and the assumption that $(\cap_{\alpha} \mathcal{F}_{\alpha}) \cap \mathcal{M} = \tilde{0}$ give the existence of an $\alpha_0 \in \Lambda$ such that $x_{(\zeta,\xi)}^p \notin \mathcal{F}_{\alpha_0}$. Therefore, $x_{(\zeta,\xi)}^p \notin Int(\mathcal{F}_{\alpha_0})$ so that $x_{(\zeta,\xi)}^p \in (\mathcal{F}_{\alpha_0})^c \subset (Int(\mathcal{F}_{\alpha_0}))^c$. It then follows that $x_{(\zeta,\xi)}^p \in (\mathcal{F}_{\alpha_0})^c \subset Cl((\mathcal{F}_{\alpha_0})^c) \subset (Int(\mathcal{F}_{\alpha_0}))^c$

which implies $Cl((\mathcal{F}_{\alpha_0})^c) \cap Int(\mathcal{F}_{\alpha_0}) = \tilde{0}$, but this means $\mathfrak{F} \propto_r x$. The contradiction gives $(\cap_{\alpha} F_{\alpha}) \cap \mathcal{M} \neq \tilde{0}$.

- (e) \Rightarrow (f) Let $\mathfrak{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Lambda\}$ be a maximal \mathcal{FFFB} in a crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$. Then by (e) $\mathfrak{M} \propto x_{(\zeta,\xi)}^p \in \mathcal{M}$ so that $\mathfrak{M} \xrightarrow{r} x_{(\zeta,\xi)}^p$ by Theorem 3.5(c).
- (f) \Rightarrow (e) Let $\mathfrak{F} = \{\mathcal{M}_{\alpha} : \alpha \in \Lambda\}$ be a \mathcal{FFFB} in a crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$. Then \exists a maximal \mathcal{FFFB} \mathfrak{M} such that $\mathfrak{M} \subset \mathfrak{F}$. By (f) $\mathfrak{M} \xrightarrow{r} x^p_{(\zeta,\xi)}$. Appling Theorem 3.5(a) and (b) we obtain that $\mathfrak{F} \propto x^p_{(\zeta,\xi)}$.

Theorem 4.9. In a $\mathcal{FFTS}(\mathbb{P},\Omega)$ the next statements are equivalent:

- (a) \mathbb{P} is \mathcal{FFC} -compact.
- (b) For each crisp set $M \in \mathcal{FFCS}(\mathbb{P})$ and each \mathcal{FFN} ϕ in M, $\exists \ a \ \mathcal{FFP} \ x^p_{(\zeta,\xi)} \in M$ such that $\phi \propto x^p_{(\zeta,\xi)}$.
- (c) For each crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$ and each universal $\mathcal{FFN} \neq in \mathcal{M} \exists a \mathcal{FFP} x^p_{(\mathcal{LE})} \in \mathcal{M}$ such that $\phi \to x^p_{(\mathcal{LE})}$.

Proof. Obvious.

Theorem 4.10. Let (\mathbb{P}, Ω) be a FFTS. Then the next conditions are equivalent:

- (a) \mathbb{P} is \mathcal{FFC} -compact.
- (b) If \mathcal{M} is a crisp \mathcal{FFCS} set of \mathbb{P} and \mathfrak{F} is a collection of \mathcal{FFRC} sets of \mathbb{P} such that $\mathcal{M} \subseteq (\cap_{\mathcal{F} \in \mathfrak{F}} \mathcal{F})^c \ \exists \ a \ finite \ number \ of \ elements \ of \ \mathfrak{F} \ say \ \mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \dots \mathcal{F}_n, \ such \ that \ \mathcal{M} \subseteq (\cap_{i=1}^n (Int(\mathcal{F}_i)))^c.$

PROOF. (a) \Rightarrow (b). Suppose that \mathbb{P} is \mathcal{FFC} -compact. Let \mathcal{M} is a crisp \mathcal{FFC} set of \mathbb{P} and \mathfrak{F} is a collection of \mathcal{FFRC} sets of \mathbb{P} such that $\mathcal{M} \subseteq (\bigcap_{\mathcal{F} \in \mathfrak{F}} \mathcal{F})^c = \bigcup_{\mathcal{F} \in \mathfrak{F}} (\mathcal{F}^c)$. Clearly $\mathfrak{U} = \{\mathcal{F}^c : \mathcal{F} \in \mathfrak{F}\}$ is a \mathcal{FFRO} cover of \mathcal{M} . Since \mathbb{P} is \mathcal{FFC} -compact, by Theorem 4.8(b), \mathfrak{U} has a finite subcover $\{\mathcal{F}^c_i : i = 1, 2, 3, \dots n\}$ such that $\mathcal{M} \subseteq \bigcup_{i=1}^n (Cl(\mathcal{F}^c_i))$. But, $\bigcup_{i=1}^n (Cl(\mathcal{F}^c_i)) = (\bigcap_{i=1}^n (Int(\mathcal{F}_i,)))^c$ Hence, $\mathcal{M} \subseteq (\bigcap_{i=1}^n (Int(\mathcal{F}_i,)))^c$.

(b) \Rightarrow (a). Let \mathcal{M} is a crisp \mathcal{FFC} set of \mathbb{P} . Let \mathfrak{F} be a collection of \mathcal{FFRO} sets of \mathbb{P} such that $\mathcal{M} \subseteq (\bigcup_{\mathcal{F} \in \mathfrak{F}} \mathcal{F})$. Put $\mathfrak{U} = \{\mathcal{F}^c : \mathcal{F} \in \mathfrak{F}\}$. Then \mathfrak{U} is clearly a collection of \mathcal{FFRC} sets of \mathbb{P} such that $\mathcal{M} \subseteq \bigcup_{\mathcal{F} \in \mathfrak{F}} \mathcal{F} = \bigcup_{\mathcal{F} \in \mathfrak{F}} (\mathcal{F}^c)^c = (\bigcap_{\mathcal{F} \in \mathfrak{F}} \mathcal{F}^c)^c$. Hence by (b) \exists a finite number of elements, say $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \dots \mathcal{F}_n$, such that $\mathcal{M} \subseteq (\bigcap_{i=1}^n (Int(\mathcal{F}_i^c)))^c = (\bigcup_{i=1}^n Cl(\mathcal{F}_i)$. Hence, \mathbb{P} is \mathcal{FFC} -compact.

Definition 4.11. Let \mathfrak{F} be a \mathcal{FFFB} . Then the $\mathcal{FFS} \cap \{Cl(\mathcal{F}) : \mathcal{F} \in \mathfrak{F}\}$ is called Fermatean fuzzy adherent (\mathcal{FFB}) set of \mathfrak{F} .

DEFINITION 4.12. A \mathcal{FFFB} \mathfrak{F} is said to be \mathcal{FFA} convergent if every \mathcal{FFO} neighborhood of the \mathcal{FFA} set of \mathfrak{F} contains an element of \mathfrak{F} .

Theorem 4.13. A $\mathcal{FFTS}(\mathbb{P},\Omega)$ is \mathcal{FFC} -compact if and only if every \mathcal{FFO} filter base is \mathcal{FFA} convergent.

PROOF. Necessity: Let (\mathbb{P}, Ω) be a \mathcal{FFC} -compact and \mathfrak{F} be a \mathcal{FFO} filter base with the \mathcal{FFO} set \mathcal{M} . Let $mathcalN \in \Omega$ be a crisp set containing \mathcal{M} . Then the collection $\mathfrak{U} = \{(Cl(\mathcal{F}))^c : \mathcal{F} \in \mathfrak{F}\}$ be a \mathcal{FFO} cover of crisp \mathcal{FFC} set \mathcal{N}^c of \mathbb{P}). Since \mathbb{P} is \mathcal{FFC} -compact, \exists a finite sub family $\{(Cl(\mathcal{F}_i))^c : i = 1, 2, 3 \dots n\}$ of \mathfrak{U} such that $\mathcal{N}^c \subset \bigcup_{i=1}^n \{(Cl(\mathcal{F}_i))^c\} \subset \bigcup_{i=1}^n \{\mathcal{F}_i^c\} = \bigcap_{i=1}^n \{\mathcal{F}_i\}$. It follows that, $\bigcap_{i=1}^n \{\mathcal{F}_i\} \subset \mathcal{N}$. Since \mathfrak{F} is a \mathcal{FFFB} $\exists \mathcal{F} \in \mathfrak{F}$ such that $\mathcal{F} \subset \bigcap_{i=1}^n \{\mathcal{F}_i\} \subset \mathcal{N}$. Hence \mathfrak{F} is \mathcal{FFFA} convergent.

Sufficiency: Assume that \mathbb{P} is not \mathcal{FFC} -compact and every \mathcal{FFO} filter base is \mathcal{FFA} convergent. Therefore, \exists a crisp \mathcal{FFC} set \mathcal{F} and a \mathcal{FFO} cover $\mathfrak{U} = \{\mathcal{G}_{\alpha}\}_{\alpha \in \Lambda}$ of \mathcal{F} such that $\mathcal{F} \not\subset \bigcup_{i=1}^n \{Cl(G_{\alpha i_i})\}$ for every finite sub family of \mathfrak{U} . Let $\mathcal{V}_n = \{(Cl(G_{\alpha_i}))^c : i = 1, 2, 3 \dots n\}$. Then $\{V_n\}$ is a \mathcal{FFO} filter base. Now, $\bigcap \{Cl(\mathcal{V}_n)\} = \bigcap_{i=1}^n \{(Cl(\mathcal{G}_{\alpha_i}))^c\} \subset \bigcap_{i=1}^n \{(\mathcal{G}_{\alpha_i})^c\} \subset \mathcal{F}^c$. Therefore $\exists \mathcal{V}_n$ contained in \mathcal{F}^c . Hence, $\mathcal{F} \subset \bigcup_{i=1}^n \{(Cl(\mathcal{G}_{\alpha_i}))\}$, which is a contradiction.

Theorem 4.14. Let $\varphi: (\mathbb{P}, \Omega) \to (\mathbb{Q}, \tau)$ be a Fermatean fuzzy continuous surjective mapping and \mathbb{P} is \mathcal{FFC} -compact. Then \mathbb{Q} is \mathcal{FFC} -compact.

PROOF. Let \mathcal{M} , be a crisp \mathcal{FFC} set of \mathbb{Q} . Let $\mathfrak{U} = \{\mathcal{G}_{\alpha} : \alpha \in \Lambda\}$ be a \mathcal{FFO} cover of \mathbb{Q} . Since φ is Fermatean fuzzy continuous, $\varphi^{-1}(\mathcal{M})$ is a crisp \mathcal{FFCS} of \mathbb{P} and $\{\varphi^{-1}(\mathcal{G}_{\alpha}) : \alpha \in \Lambda\}$ is a \mathcal{FFO} cover of $\varphi^{-1}(\mathcal{M})$ in \mathbb{P} . Since \mathbb{P} is \mathcal{FFC} -compact, there exists a finite sub family $\{\varphi^{-1}(\mathcal{G}_{\alpha_1}), \varphi^{-1}(\mathcal{G}_{\alpha_2}), \varphi^{-1}(\mathcal{G}_{\alpha_3}), \dots, \varphi^{-1}(\mathcal{G}_{\alpha_n})\}$ such that $\varphi^{-1}(\mathcal{M}) \subseteq \bigcup_{i=1}^n \{Cl(\varphi^{-1}(\mathcal{G}_{\alpha_i}))\} \subseteq \bigcup_{i=1}^n \{\varphi^{-1}(Cl(\mathcal{G}_{\alpha_i}))\}$. It follows that $\mathcal{M} \subseteq \bigcup_{i=1}^n \{Cl(\mathcal{G}_{\alpha_i})\}$. Hence, \mathbb{Q} is \mathcal{FFC} -compact.

DEFINITION 4.15. Let (\mathbb{P}, Ω) be a \mathcal{FFTS} and \mathbb{Y} be a nonempty crisp subset of \mathbb{P} . Then $\Omega_{\mathbb{Y}} = \{\mathcal{M} \cap \mathbb{Y} : \mathcal{M} \in \Omega\}$, is said to be the Fermatean fuzzy relative topology on \mathbb{Y} and $(\mathbb{Y}, \Omega_{\mathbb{Y}})$ is called a Fermatean fuzzy subspace (\mathcal{FFSS}) of (\mathbb{P}, Ω) .

THEOREM 4.16. Let $(\mathbb{Y}, \Omega_{\mathbb{Y}})$ be a \mathcal{FFSS} of a \mathcal{FFTS} (\mathbb{P}, Ω) and $M \in FFS(\mathbb{P})$, then:

- (a) $\mathcal{M} \in \Omega_{\mathbb{Y}} \Leftrightarrow \mathcal{M} = \mathbb{Y} \cap O \text{ for some } O \in \Omega.$
- (b) $\mathcal{M} \in \mathcal{FFCS}(\mathbb{Y}) \Leftrightarrow \mathcal{M} = \mathbb{Y} \cap \mathcal{F} \text{ for some } \mathcal{F} \in FFSC(\mathbb{P}).$

THEOREM 4.17. Let $(\mathbb{Y}, \Omega_{\mathbb{Y}})$ be a FFSS of a FFTS (\mathbb{P}, Ω) and $M \in \Gamma_{\mathbb{Y}}$. If $\mathbb{Y} \in \Omega$ then $M \in \Omega$.

THEOREM 4.18. Let $(\mathbb{Y}, \Omega_{\mathbb{Y}})$ be a \mathcal{FFSS} of a \mathcal{FFTS} (\mathbb{P}, Ω) . Then a \mathcal{FFS} $\mathcal{M}_{\mathbb{Y}} \in FFCS(\mathbb{Y}) \Rightarrow \mathcal{M}_{\mathbb{Y}} \in FFCS(\mathbb{P}) \Leftrightarrow \mathbb{Y} \in FFCS(\mathbb{P})$.

DEFINITION 4.19. A crisp subset \mathcal{M} of a $\mathcal{FFTS}(\mathbb{P}, \Omega)$ is called \mathcal{FFC} -compact if the $\mathcal{FFSS}(\mathbb{M}, \Omega_M)$ is \mathcal{FFC} -compact.

Definition 4.20. A subset \mathcal{M} of a \mathcal{FFTS} (\mathbb{P}, Ω) is called \mathcal{FFC} -compact relative to Ω if every \mathcal{FFO} cover of \mathcal{M} has a finite subfamily whose closure covers \mathcal{M} .

Theorem 4.21. Every Fermatean fuzzy closed open crisp subset of a \mathcal{FFC} -compact space is \mathcal{FFC} -compact.

Theorem 4.22. Every Fermatean fuzzy closed crisp subset \mathcal{M} of an FFC-compact space (\mathbb{P}, Ω) is FFC-compact relative to Ω .

Proof. Follows from Definition 4.20 and Theorem 4.18

Theorem 4.23. A \mathcal{FFTS} (\mathbb{P}, Ω) is \mathcal{FFC} -compact if \mathbb{P} is the finite union of \mathcal{FFO} *C*-compact crisp subsets.

PROOF. suppose $\mathbb{P} = \mathcal{M} \cup \mathcal{N}$ where \mathcal{M} and \mathcal{N} are \mathcal{FFO} crisp subsets of \mathbb{P} and $(\mathcal{M}, \Omega_{\mathcal{M}}), (\mathcal{N}, \Omega_{\mathcal{N}})$ are \mathcal{FFC} -compact. Let \mathcal{K} be a crisp \mathcal{FFCS} in \mathbb{P} and $\{\mathcal{G}_{\alpha} : \alpha \in \Lambda\}$ be a \mathcal{FFO} cover of \mathcal{K} . Since $\mathcal{M} \in \Omega$, $\{\mathcal{G}_{\alpha} \cap \mathcal{M} : \alpha \in \Lambda\}$ is a $\Omega_{\mathcal{M}} - \mathcal{FFO}$ cover of the $\Omega_{\mathcal{M}} - \mathcal{FFC}$ crisp subset $\mathcal{K} \cap \mathcal{M}$ of \mathcal{M} . By hypothesis

 $\mathcal{K} \cap \mathcal{M} \subset \bigcup_{i=1}^n \Omega_{\mathcal{M}} - Cl(\mathcal{G}_{\alpha_i}) \cap \mathcal{M} \subset \bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})$ for some $n \in \mathbb{N}$. Similarly

 $K \cap \mathcal{N} \subset \bigcup_{i=1}^m Cl(\mathcal{G}_{\beta_i})$, for some $m \in \mathbb{N}$.

Hence, $\mathcal{K} \subset (\bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})) \bigcup (\bigcup_{j=1}^m Cl(\mathcal{G}_{\beta_j}))$ which implies that \mathbb{P} is \mathcal{FFC} -compact.

Theorem 4.24. A FFTS (\mathbb{P}, Ω) is FFC-compact if \mathbb{P} is the finite union of subsets of \mathbb{P} which are FFC-compact relative to Ω .

Proof. Similar to that of Theorem 4.23

Author contributions:

Conceptualisation: S. S.Thakur , M. Thakur ; Software: M. Thakur, A. S. Rajput; Writing-Original Draft: M. Thakur, A. S. Rajput; Checking: S. S.Thakur

Conflicts of Interest: The authors declare no conflict of interest.

References

- [1] K. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems 20(1)(1986), 87–96.
- [2] H. Z. Ibrahim, H.Z., Fermatean Fuzzy Topological Spaces, Journal of Applied Mathematics and Informatics 40(1-2)(2022), 85–98.
- [3] C. L. Chang, *Fuzzy Topological Spaces*, Journal of Mathematical Analysis and its Applications **24**(1)(1968), 182-190.
- [4] D. Coker, *Introductions to Intuitionistic Fuzzy Topological Spaces*, Fuzzy Sets and Systems **88**(1)(1997), 81–89.
- [5] D. Coker, and A.Es. Hayder, On Fuzzy Compactness in Intuitionistic Fuzzy Topological Spaces, Journal of Fuzzy Mathematics 5(2)(1997), 365–378.
- [6] H. Gurcay, D. Coker, and A.Es. Hayder, *On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces*, Journal of Fuzzy Mathematics **5**(2)(1997) 365–378.
- [7] L. L. Herrington, and P. E.Long, Characterization of C-compact Spaces, Proceedings of the American mathematical Society 52(1975), 417–426.
- [8] F. G. Lupianez, Nets and Filters in Intuitionistic Fuzzy Topological Spaces, Information Sciences 176 (2006), 2396—2404
- [9] M. Olgun, M. Ünver, and S. Yardımc, Pythagorean Fuzzy Topological Spaces, Complex and Intelligent Systems 5(2019), 177–183.
- [10] X. Peng, and Y. Yang, Some results for Pythagorean Fuzzy Sets, International Journal of Intelligent Systems 30(2015),1133—1160.

- [11] T. Senapati, and R.R. Yager, *Fermatean Fuzzy Sets*, Journal of Ambient Intelligence and Humanized Computing **11**(2020), 663–674.
- [12] T. Senapati, and R.R. Yager, Some new operations over Fermatean Fuzzy Numbers and application of Fermatean Fuzzy WPM in Multi-criteria Decision Making, Informatica 30(2)(2021), 391–412.
- [13] S. S. Thakur, C.P. Rahore, and M. Thakur, Generalized e-closed Sets and Generalized e-continuity in Intuitionistic fuzzy Topology, Journal of Mathematics and Computer Science 25(3)(2021), 219-=231.
- [14] S. S. Thakur, C.P. Rathore, and J.P. Bajpai, Intuitionistic Fuzzy Semi δ-preopen Sets and Intuitionistic Fuzzy Semi δ-precontinuity, Journal of Indonesean Mathematical Society 25(2)(2021), 212–227.
- [15] S. S. Thakur., and R. Chaturvedi, Generalized Closed Set in Intuitionistic Fuzzy Topology Journal of Fuzzy Mathematics 16(3)(2008),559–572.
- [16] S. S. Thakur, and J.P. Bajpai, On Intutionistic Fuzzy gpr-closed Sets, Fuzzy Information and Engineering 4(4)(2012) 425-444.
- [17] G. Viglino, *C-compact Spaces*, Duke Journal of Mathematics **36**(4)(1969), 761-764.
- [18] R. R. Yager, Pythagorean Fuzzy Subsets, In: Editor, Pedrycz, W. Reformat, Marek Z.,(eds) Proceedings of the 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS): 57–61, IEEE, Edmonton, Canada.
- [19] L. A. Zadeh, *Fuzzy Sets*, Information and Control **18**(1965), 338-=353.

Mahima Thakur, Department of Applied Mathematics, Jabalpur Engineering College Jabalpur (M.,P.)-482011, India

e-mail: mahimavthakur@gmail.com

Samajh Singh Thakur, Department of Applied Mathematics, Jabalpur Engineering College Jabalpur (M.,P.)-482011, India

e-mail: ssthakur@jecjabalpur.ac.in

Alpa Singh Rajput, Department of Mathematics, DIT University, Dehradun, Uttarakhand, India

e-mail: alpa.singh.rajput@dituniversity.edu.in