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C-COMPACTNESS IN FERMATEAN FUZZY TOPOLOGY
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Abstract

The studies of Fermatean fuzzy sets and Fermatean fuzzy topology was initiated in the year 2019 and 
2022 respectively. The present paper created the concepts of C-compactness, nets and filters in Fermatean 
fuzzy topological spaces. Several results related to characterizations and properties of fermaten fuzzy C-
compactness have been established
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1. Introduction

The fusion of technology and generalized forms of classical sets is very useful to 
solve many real world complex problems which involve the vague and uncertain 
information. A classical set is defined by its characteristic function from universe 
of discourse to two point set{0,1}. Classical set theory is insufficient to handle 
the complex problems involving vague and uncertain information. To handle the 
vagueness and uncertainty of complex problems, Zadeh [19] in 1965, created fuzzy 
sets (F Ss) as a generalization of classical sets which characterised by membership 
function from universe of discourse to closed interval [0,1]. F S theory is applicable 
in various areas such as control theory, artificial intelligence, pattern recognition , 
database system and medical diagnosis. After two years of creation of F Ss, Chang 
[3]initiated the study of fuzzy topology. Now fuzzy topology is established a separated 
branch of fuzzy mathematics. In the last sixty years sevral generalizations of F Ss 
and fuzzy topology was appeared in the literature. Intuitionistic fuzzy sets (IF Ss) 
introduced by Atanassov[1] is a generalization of F Ss characterised by membership 
and non-membership functions from an universe of discourse to closed interval [0,1] 
whose sum lies between 0 and 1 for each point of universe of discourse. In 1987 
Coker [4], created the notion of intuitionistic fuzzy topology. Coker and his coworkers 
[5, 6], Thakur and his associates [13–16], Lupianez [8] and others are contributed 
in the development of intuitionistic fuzzy topology. In 2013 Yager [18] introduced 
Pythagorean fuzzy sets ( PF Ss) characterized by a membership degree and a non-
membership degree whose square sum is less than or equal to one. The collection of
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Table 1. Abbreviations and their descriptions

Abbreviation Description Abbreviation Description

FS Fuzzy set IFS Intuitionistic fuzzy set
PFS Pythagorean fuzzy set FFS Fermatean fuzzy set
FFS(P) Family of FFSs of P FFT Fermatean fuzzy topology
FFTS Fermatean fuzzy topological space FFO Fermatean fuzzy open
FFC Fermatean fuzzy closed FFC(P) Family of FFC sets of P
FFRO Fermatean fuzzy regular open FFRO(P) Family of FFRO sets of P
FFRC Fermatean fuzzy regular closed FFRCS(P) Family of FFRC sets of P
FFP Fermatean fuzzy point FFFB Fermatean fuzzy filter base
FFN Fermatean fuzzy net FFA Fermatean fuzzy adherent
FFSS Fermatean fuzzy sub space FFC-compact Fermatean fuzzy C-compact

all PFSs on a universe of discourse contains the collection of all IFSs, but reverse
containments is not true. Obviously, PFSs are more effective than IFSs. Peng and
Yang [10], studied Some more results for PFSs. In 2019, Olgun and his coworkers
[9] introduced pythagorean fuzzy topological spaces and studied continuity and some
important pythagorean fuzzy topological concepts. In 2020 Senapati and Yager[11]
created the concept of Fermatean fuzzy sets (FFSs) as a generalization of PFSs . In
another paper they [12] defined some new operations over FFSs and presented their
applications in multi-criteria decision making. Recently Ibrahim [2] created fermaten
fuzzy topological spaces as an extension of pythagorean fuzzy topological spaces and
studied Fermatean fuzzy continuity and Fermatean fuzzy separation axioms. The study
of C-compactness in topology wae initiated by Viglino [17] in 1969. Herrington and
Long [7] gave some characterizations of C-compact spaces. The organization of paper
is as follows. Section 2 is preliminary and review the basic concepts of Fermatean
fuzzy sets and Fermatean fuzzy topology. Section 3 created Fermatean fuzzy nets
and Fermatean fuzzy filters and studied their r-convergence. Section 4 defined and
characterized Fermatean fuzzy C-compact spaces.

2. Preliminaries

Definition 2.1. Let P be an universal set. An structure of the form M = {<
p, %M(p), σM(p) >: p ∈ P} is called:

(a) Intuitionistic fuzzy set(IFS)[1] if 0 ≤ %M(p) + σM(p) ≤ 1 ∀p ∈ P;
(a) Pythagorean fuzzy set(PFS)[18] if 0 ≤ %M(p) + σM(p) ≤ 1 ∀p ∈ P;
(a) Fermatean fuzzy set(FFS)[11] if 0 ≤ %M(p) + σM(p) ≤ 1 ∀p ∈ P.

Where %M : P → [0, 1] and σM : P → [0, 1] are respectively called the membership
and non membership function ofM. The collection of all FFSs of P will be denoted
by FFS(P).

Remark 2.2. [11] Every IFS is a PFS and every PFS is a FFS , but the converse
may not be true.
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Definition 2.3. [11] Let P be an universe of discourse andM = {< p, %M(p), σM(p) >:
p ∈ P},N = {< p, %N (p), σN (p) >: p ∈ P} ∈ F FS(P). Then :

(a) M ⊆ N if %M(p) ≤ %N (p) and σM(p) ≥ σN (p) ∀p ∈ P.
(b) M = N ifM ⊆ N and N ⊆ M.
(c) Mc = {< p, σM(p), %M(p) >: p ∈ P}.
(d) M∩N = {< p, %M(p) ∧ %N (p), σM(p) ∨ σN (p) >: p ∈ P}
(e) M∪N = {< p, %M(p) ∨ %N (p), σM(p) ∧ σN (p) >: p ∈ P}.
(f) 0̃ = {< p, 0, 1 >: p ∈ P}.
(g) 1̃ = {< p, 1, 0 >: p ∈ P}.

Definition 2.4. [11] Let P be an universe of discourse and {Mk : k ∈ Λ} ⊆ FFS(P).
Then:

(a) ∩Mk = {< p,
∧
%Mk (p),

∨
σMk (p) >: p ∈ P};

(b) ∪Mk = {< p,
∨
%Mk (p),

∧
σMk (p) >: p ∈ P}.

Definition 2.5. [2] A collection Ω ⊆ FFS(P) is called a Fermatean fuzzy topology
(FFT ) on P if:

(1) 0̃, 1̃ ∈ Ω.
(2) G1,G2 ∈ Ω⇒ G1 ∩ G2 ∈ Ω.
(3) {Gα : α ∈ Λ} ⊆ Ω⇒ ∪α∈Λ{Gα : α ∈ Λ} ∈ Ω.

The structure (P,Ω) is called a Fermatean fuzzy topological space (FFTS) and
each FFS in Ω is called Fermatean fuzzy open (FFO) set in P. A FFSM is said
to be Fermatean fuzzy closed (FFC) ifMc ∈ Ω. The collection of all FFCS sets in
a FFTS (P,Ω) is denoted by FFCS(P).

Definition 2.6. [2] Let (P,Ω) be a FFTS andM ∈ FFS(P) . Then the interior and
closure ofM are defined by:

Cl(M) = ∩{F : F ∈ FFCS(P) andM ⊂ F }.
Int(M) = ∪{H : H ∈ Ω andH ⊆ M}.

Theorem 2.7. [2] Let (P,Ω) be a FFTS andM ∈ FFS(P) . Then:

(a) M ∈ FFCS(P)⇔ Cl(M) =M.
(b) M ∈ Ω⇔ Int(M) =M.
(c) Cl(Mc) = (Int(M))c.
(d) Int(Mc) = (Cl(M))c.

Definition 2.8. [2] Let P be a non-empty set and p ∈ P a fixed element in P . Suppose
ζ ∈ (0, 1] and ξ ∈ [0, 1) are two fixed real numbers such that ζ3 + ξ3 ≤ 1. Then, a
Fermatean fuzzy point (FFP) xp

(ζ,ξ) = {〈p, %x(p), σx(p)〉} is defined to be a FFS of
P given by

xp
(ζ,ξ)(q) =

(ζ, ξ) if q = p
(0, 1) otherwise ,
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for q ∈ P. In this case, p is called the support of xp
(ζ,ξ). A FFP xp

(ζ,ξ) is said to belong
to a FFS F = {〈p, %F (p), σF (p)〉} of P denoted by xp

(ζ,ξ) ∈ F if ζ ≤ %F (p) and
ξ ≥ σF (p). Two FFPs are said to be distinct if their supports are distinct. The set of
all FFPs of P will be denoted by FFP(P).

Theorem 2.9. [2] Let M1 = {〈p, %M1 (p), σM1 (p)〉} and M2 = {〈p, %M2 (p), σM2 (p)〉}
be two FFSs of P . Then,M1 ⊂ M2 if and only if xp

(ζ,ξ) ∈ M1 implies xp
(ζ,ξ) ∈ M2 for

any FFP xp
(ζ,ξ) in P .

Definition 2.10. Two FFS sM and N of P are said to be q-coincident (MqN) if ∃
an element p ∈ P such that %M(p) > σN (p) or σM(p) < %N (p).

Theorem 2.11. If M is a crisp set and N is any FFS of a non empty set P. Then
M∩N = 0̃⇔M ⊂ Nc.

Definition 2.12. [2] Let P and Q be two non-empty sets and ϕ : P → Q be a
mapping. LetM and N be FFSs of P and Q, respectively. Then:
(a) The membership and non-membership functions of image ofM with respect to

ϕ that is denoted by ϕ(M) are defined by

%ϕ(M)(q) =

 sup
r∈ϕ−1(q)

%M(r) if ϕ−1(q) , φ

0 otherwise

and

σϕ(M)(q) =

 inf
r∈ϕ−1(q)

σM(r) if ϕ−1(q) , φ

1 otherwise

respectively.
(b) The membership and non-membership functions of pre-image ofN with respect

to ϕ that is denoted by ϕ−1(N) are respectively defined by %ϕ−1(N)(p) = %N (ϕ(p))
and σϕ−1(N)(p) = σN (ϕ(p)).

Definition 2.13. [2] A mapping ϕ : (P,Ω → (Q,Γ) is called Fermatean fuzzy
continuous if ϕ−1(M) ∈ Ω, ∀M ∈ Γ.

3. Fermatean fuzzy filters

Definition 3.1. Let P be an universe of discourse. A nonempty family F ⊆ FFS(P)
is called a Fermatean fuzzy filter base (FFFB) in P if:
(a) 0̃ < F;
(b) F1 ∩ F2 ∈ F,∀ F1,F2 ∈ F;
(c) F1 ∈ F and F1 ⊆ F2 ⇒ F2 ∈ F, ∀ F1,F2 ∈ F.

Definition 3.2. Let (P,Ω) be a FFTS and N ∈ FFS(P). Then N is called an
ε-neighbourhood of a FFP xp

(ζ,ξ) of P if ∃ G ∈ Ω such that xp
(ζ,ξ) ∈ G ⊆ N . The

family of all an ε neighbourhood of xp
(ζ,ξ) is denoted by N(xp

(ζ,ξ)).
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Definition 3.3. Let P be a non empty set and D is a directed set. A map φ : D →
FFP(P) is called a Fermatean fuzzy net(FFN). We will write φd = φ(d)(for
d ∈ D), φ = (φd)d∈D.

Definition 3.4. Let (P,Ω) be a FFTS andM be a non empty crisp set of P, let F =

{Mα ⊂ M : α ∈ ∆} be a FFFB inM Then :

(a) FFFB F is called r-converges to a FFP xp
(ζ,ξ) ∈ M (written as F →

r
xp

(ζ,ξ)), if

∀ N ∈ N(xp
(ζ,ξ)) ∃ Mα ∈ F such thatMα ⊂ Cl(N).

(b) FFFB F is called r-accumulates to a FFP xp
(ζ,ξ) ∈ M (written as ∝

r
xp

(ζ,ξ)), if

∀ N ∈ N(xp
(ζ,ξ)) and eachMα ∈ F, Mα ∩Cl(N) , 0̃.

Theorem 3.5. Let (P,Ω) be a FFTS, M ⊂ P and xp
(ζ,ξ) ∈ FFP(P).

(a) Let F is a FFFB inM . If F→
r

xp
(ζ,ξ) ∈ M, then F ∝

r
xp

(ζ,ξ).

(b) Let F1 and F2 be two FFFB in M and F2 is stronger than F1(F1 ⊂ F2). If
F2 ∝

r
xp

(ζ,ξ) ∈ M, then F1 ∝
r

xp
(ζ,ξ).

(c) LetM be a maximal FFFB inM. Then F ∝
r

xp
(ζ,ξ) ∈ M ⇔ F→r

xp
(ζ,ξ).

Proof. Obvious and left to the readers. �

Definition 3.6. Let (P,Ω) be a FFTS and M be a non empty crisp subset of P.
Suppose D is a directed set and φ : D→ FFP(M) is a FFN . then:

(a) φ is called r-converges to a FFP xp
(ζ,ξ) ∈ M( written as φ →

r
xp

(ζ,ξ)) if

∀ V ∈ Ω containing xp
(ζ,ξ), ∃ b ∈ D such that φ(Tb) ⊂ Cl(V). Where

Tb = {c ∈ D : c ≥ b}.
(b) φ called r-accumulates to a FFP xp

(ζ,ξ) ∈ M (written as φ ∝
r

xp
(ζ,ξ)) if ∀ V ∈ Ω

containing xp
(ζ,ξ), and ∀ b ∈ D such that φ(Tb) ∩ Cl(V) , 0̃. Where

Tb = {c ∈ D : c ≥ b}.

Definition 3.7. If φ : D → FFP(M) is a FFN in M ⊂ P. Then the family
F(φ) = {φ(Tb) : c ∈ D} is a FFFB inM called a FFFB associated to φ.

Theorem 3.8. Let (P,Ω) be a FFTS. If F(φ) is a FFFB inM ⊂ P associated to
FFN φ. Then

(a) F(φ)→
r

xp
(ζ,ξ) ∈ M ⇔ φ→

r
xp

(ζ,ξ).

(b) F(φ) ∝
r

xp
(ζ,ξ) ∈ M ⇔ φ ∝

r
xp

(ζ,ξ).

Proof. Obvious. �

Definition 3.9. Let P be a non empty set and M be a crisp subset of P . Let F be a
FFFB in P then consider the family DF = {(xp

(ζ,ξ),F) : xp
(ζ,ξ) ∈ FFP(M), xp

(ζ,ξ) ∈

F ,F ∈ F} with the relation (xp
(ζ,ξ),F ) ≤ (xp′

(ζ,ξ),F
′) ⇔ F ′ ⊆ F .Then the
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F F N φF : DF → F F P(M) such that φF(x(
p
ζ,ξ), F ) = x(

p
ζ,ξ) is called called F F N

associate to F.

Theorem 3.10. In a F F T S (P, Ω), If φF : D → F F P(M) is a F F N in M ⊂ P 
associated to a F F F B F. then:

(a) F→
r

xp
(ζ,ξ) ∈ M ⇔ φF →

r
xp

(ζ,ξ).

(b) F ∝
r

xp
(ζ,ξ) ∈ M ⇔ φF ∝

r
xp

(ζ,ξ).

Proof. (a)Necessity. Since F r-converges to xp
(ζ,ξ) inM , ∀ N ∈ N(xp

(ζ,ξ)) ∃ Mα ∈ F

such thatMα ⊂ Cl(N). For every FFP xq
(ζ,ξ) such that xq

(ζ,ξ) ∈ Mα, (xq
(ζ,ξ),Mα) ∈ DF.

If(xq′

(ζ,ξ),Mβ) ∈ DF and (xq′

(ζ,ξ),Mβ) ≥ (xq
(ζ,ξ),Mα) then xq′

(ζ,ξ) ∈ Mβ andMβ ⊂ Mα.Thus

φF(xq′

(ζ,ξ),Mβ) = xq′

(ζ,ξ) ∈ Mα ⊂ Cl(N).Hence φF →
r

xp
(ζ,ξ).

Sufficiency. Since φF r-converges to xp
(ζ,ξ) inM, ∀ N ∈ N(xp

(ζ,ξ)) ∃ (xq0
(ζ,ξ),M0) ∈

DF such that φF(xq
(ζ,ξ),Mα) = xq

(ζ,ξ) ∈ Mα ⊂ Cl(N) ∀ (xq
(ζ,ξ),Mα) ≥ (xq0

(ζ,ξ),M0).
This implies that M0 ⊂ Mα because ∀ FFP xq

(ζ,ξ) in P xq
(ζ,ξ) ∈ M0 we have

(xq
(ζ,ξ),M0) ≥ (xq0

(ζ,ξ),M0), xq
(ζ,ξ) ∈ Mα. Consequently, M0 ⊂ Cl(N). Hence,

F→
r

xp
(ζ,ξ) ∈ M.

(b)Necessity. Since F r-accumulates to xp
(ζ,ξ) inM , ∀ N ∈ N(xp

(ζ,ξ)) ∃ Mα ∈ F

such thatMα ∩Cl(N) , 0̃. For every FFP xq
(ζ,ξ) such that xq

(ζ,ξ) ∈ Mα, (xq
(ζ,ξ),Mα) ∈

DF. If(xq′

(ζ,ξ),Mβ) ∈ DF and (xq′

(ζ,ξ),Mβ) ≥ (xq
(ζ,ξ),Mα) then (xq′

(ζ,ξ) ∈ Mβ and Mβ ⊂

Mα.Thus φF(xq′

(ζ,ξ),Mβ) = xq′

(ζ,ξ) ∈ Mα. This implies that φF(xq′

(ζ,ξ),Mβ) ∩ Cl(N) , 0̃.
Hence, φF ∝

r
xp

(ζ,ξ).

Sufficiency. Since φF r-accumulates to xp
(ζ,ξ) inM, ∀ N ∈ N(xp

(ζ,ξ)) ∃ (xq0
(ζ,ξ),M0) ∈

DF such that φF(xq
(ζ,ξ),Mα) = xq

(ζ,ξ) ∈ Mα and φF(xq
(ζ,ξ),Mα)∩Cl(N) , 0̃, ∀ (xq

(ζ,ξ),Mα) ≥
(xq0

(ζ,ξ),M0). This implies thatM0 ⊂ Mα because ∀ FFP xq
(ζ,ξ) in P xq

(ζ,ξ) ∈ M0 we
have (xq

(ζ,ξ),M0) ≥ (xq0
(ζ,ξ),M0), xq

(ζ,ξ) ∈ Mα. Consequently,Mα ∩ Cl(N) , 0̃. Hence,
F ∝

r
xp

(ζ,ξ) inM. �

4. Fermatean fuzzy C-compactness
Definition 4.1. A family {Gα : α ∈ Λ} of FFS s of a FFTS (P,Ω) is called a
Fermatean fuzzy cover of P if 1̃ = ∪α∈Λ{Gα}.

Definition 4.2. A FFTS (P,Ω) is called Fermatean fuzzy compact if every FFO
cover of P has a finite sub cover.

Definition 4.3. A FFTS (P,Ω) is said to be Fermatean fuzzy C-compact(FFC-
compact) if ∀ properFFC crisp set M of (P) and ∀ FFO cover {Gα : α ∈ Λ} of
M, ∃ a finite number of elements Gα1 ,Gα2,,Gα3 , . . .Gαn such thatM ⊂

⋃n
i=1{Cl(Gαi )}.

252
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Theorem 4.4. Let (P,Ω) be a FFTS . If P is Fermatean fuzzy compact then it is
FFC- compact.

Proof. Easy and left to the readers. �

Definition 4.5. A FFSM in a FFTS (P,Ω) is called:
(a) Fermatean fuzzy regular open (FFRO) ifM = Int(Cl(M)).The collection of all

FFRO sets of P will be denoted by FFROS(P).
(b) Fermatean fuzzy regular closed (FFRC) ifMc ∈ FFROS(P).The collection of

all FFRC sets of P will be denoted by FFRCS(P).

Remark 4.6. In a FFTS (P,Ω) , FFROS(P) ⊂ Ω and FFRCS(P) ⊂ FFCS(P),
but the reverse containment may not be true.

Example Let P = {p1, p2} be an universe of discourse and Ω = {0̃,M, 1̃} be
a FFT on P. Where, M = {< p1, 0.8, 0.7 >, < p2, 0.7, 0.8 >}. Then M ∈ Ω

(resp.Mc ∈ FFCS(P)) butM < FFROS(P) (resp. Mc < FFRCS(P)).

Theorem 4.7. Let (P,Ω) be a FFTS and M ∈ FFS(P). Then Int(Cl(M)) ∈
FFROS(P) and Cl(Int(M)) ∈ FFRCS(P).

Theorem 4.8. In a FFTS (P,Ω) the next statements are equivalent:

(a) P is FFC-compact.
(b) For each FFC crisp set M of P and each FFRO cover G = {Gα : α ∈ Λ}

of M ∃ a finite number of elements Gα1 ,Gα2,,Gα3 , . . .Gαn of G such that
M ⊆

⋃n
i=1 Cl(Gαi ).

(c) For each crisp setM ∈ FFCS(P) and for each collection F = {Fα : α ∈ Λ} of
non empty FFRC sets of P such that (∩α∈ΛFα) ∩M = 0̃, ∃ a finite number of
elements Fα1 ,Fα2 ,Fα3,, . . .Fαn of F such that (

⋂n
i=1 Int(Fαi )) ∩M = 0̃.

(d) For each crisp setM ∈ FFCS(P) and for each collection F = {Fα : α ∈ Λ} of
FFRC sets of P, if for each finite subcollection {Fα1 ,Fα2 ,Fα3 , · · · Fαn}, of F has
the property that

⋂n
i=1(Int(Fαi )) ∩M , 0̃, then (∩α∈ΛFα) ∩M , 0̃.

(e) For each crisp set M ∈ FFCS(P) and each FFFB F = {Mα : α ∈ Λ} in
M ∃ a FFP xp

(ζ,ξ) ∈ M such that F ∝
r

xp
(ζ,ξ).

(f) For each crisp setM ∈ FFCS(P) and each maximal FFFB M = {Mα : α ∈
Λ} inM ∃ a FFP xp

(ζ,ξ) ∈ M such thatM ∝
r

xp
(ζ,ξ).

Proof. (a)⇒ (b) Follows easily from Definition 4.3 and Remark 4.6.
(b) ⇒ (a). Suppose (b) holds.Let {Gα : α ∈ Λ} be a FFO cover of a crisp set

M ∈ FFCS(P) . Then by thm {Int(Cl(Gα)) : α ∈ Λ}. will be FFRO cover ofM.
Therefore , by (b) ∃ a finite sub collection {Int(Cl(Gαi )) : i = 1, 2, 3 . . . n} such that
M ⊂

⋃n
i=1 Cl(Int(Cl(Gαi ))) =

⋃n
i=1 Cl(Gαi ).. Consequently,M ⊂

⋃n
i=1 Cl(Gαi ) and P

is FFC-compact.
(b)⇒ (c). LetM be a crisp FFCS of P. Let F = {Fα : α ∈ Λ} be a collection of

non empty FFRC sets of P such that (∩{Fα : α ∈ Λ}) ∩ M = 0̃ for each proper
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crisp set M ∈ F F CS(P). Then U = {F cα : α ∈ Λ} is FFRO cover of crisp
setMFFCS(P). Therefore ∃ a finite sub collection {Gαi = F c

αi
: i = 1, 2, 3 . . . n}

of U such that M ⊂
⋃n

i=1 Cl(Gαi ). Now for each αi we have, Int(Fαi ) = Int(Gc
αi

) =

(Cl(Gc
αi

)c)c = Cl(Gc
αi

). Therefore
⋂n

i=1 Int(Fαi ) =
⋃n

i=1(Cl(Gαi ))
c = Mc. This shows

that
⋂n

i=1(Int(Fαi )) ∩M =Mc ∩M = 0̃, becauseM is a crisp set of P.
(c) ⇒ (b). LetU = {Gα : α ∈ Λ} be a FFRO cover of a proper crisp set

M ∈ FFCS(P). Therefore, M ⊂
⋃
α∈Λ Gα. It follows that Mc ⊇ (

⋃
α∈Λ Gα)c =⋂

α∈Λ Gα
c. And so, (∩α∈ΛGαc) ∩ M ⊂ Mc ∩ M = 0̃, because M is a crisp set of P.

Therefore F = {Gc
α : α ∈ Λ} is a collection of non empty FFRCSs of P, satisfying

(∩α∈ΛF ) ∩ M = 0̃. And so by (c) , ∃ a finite sub collection {Gc
αi

: i = 1, 2, 3 . . . n}
of F such that

⋂n
i=1(Int(Gc

αi
)) ∩M = 0̃. It follows that,M ⊂

⋃n
i=1(Int(Gc

αi
))c). Now

for each αi we have, Int(Gc
αi

) = (Cl(Gc
αi

)c)c = Cl(Gαi )
c. Therefore, we obtain that

M ⊂
⋃n

i=1 Cl(Gαi ).
(c) ⇒ (d). Let M be a crisp FFC set of P. Let F = {Fα : α ∈ Λ} be

a collection of non empty FFRC sets of P such that for every finite subcollec-
tion {Fα1 ,Fα2 ,Fα3,, . . .Fαn} }of F we have

⋂n
i=1 Int(Fαi ) ∩ M , 0̃. We want to

show that (∩Fα) ∩ M , 0̃. If (∩Fα) ∩ M = 0̃, Then by (c), ∃ a finite family
{Fα1 ,Fα2 ,Fα3 , . . .Fαn}., such that

⋂n
i=1 Int(Fαi ) ∩ M = 0̃, which is a contradiction.

Hence (∩Fα) ∩M , 0̃.
(d) ⇒ (c). LeM be a crisp FFC set of P and F = {Fα : α ∈ Λ} be a collection

of non emptyFFRC sets of P such that (∩Fαi ) ∩ M = 0̃. We have to show that ∃
a finite integer (say) n such that

⋂n
i=1 int(Fαi ) ∩M = 0̃. Suppose now that for every

finite integer n we have
⋂n

i=1 Int(Fαi ) ∩M , 0̃. Then by (d) we have (∩Fα) ∩M , 0̃
which is a contradiction.

(a)⇒ (e). Suppose ∃ FFFB F = {Mα : α ∈ Λ} inM, such that F ∝
r

xp
(ζ,ξ) for

all FFP xp
(ζ,ξ) ∈ M. Then ∀ xp

(ζ,ξ) ∈ M ∃ N(xp
(ζ,ξ)) ∈ Ω and someMα(xp

(ζ,ξ))
∈ F such

that Mα(xp
(ζ,ξ))
∩ Cl(N(xp

(ζ,ξ))) = 0̃. The collection {N(xp
(ζ,ξ)) : xp

(ζ,ξ) ∈ M} is a FFO
cover of M, so by (a) ∃ a finite sub collection {N(xp

(ζi,ξi)
) : i = 1, 2, 3, . . . , n} such

that M ⊂
⋃n

i=1 Cl(N(xp
(ζi,ξi)

). Let Mα0 ∈ F such that Mα0 ⊂
⋂n

i=1Mα(xp
(ζi ,ξi)

). Since

Mα0 , 0̃ there is some 1 ≤ j ≤ n such thatMα0 ∩ Cl(N(xp
(ζ j,ξ j)

)) , 0̃ . This implies
thatMα(xp

(ζ j ,ξ j)
) ∩Cl(N(xp

(ζ j,ξ j)
)) , 0̃ which is a contradiction .

(e) ⇒ (d). Suppose ∃ a crisp M ∈ FFCS(P) and a collection {Fα : α ∈ Λ}

of FFRC sets of P such that each finite subcollection {Fαi : i = 1, 2, 3, . . . , n} has a
property that (∩n

i=1Int(Fαi ))∩M , 0̃ , but (∩αFα)∩M = 0̃. Then (Int(Fαi ))∩M, α ∈ Λ,
together with all finite intersection of the form ∩n

i=1(Int(Fαi ))∩M, form a FFFB F
in M. Then by (e) F r-accumulates to some FFP xp

(ζ,ξ) ∈ M. Thus ∀ N(xp
(ζ,ξ))

containing xp
(ζ,ξ) and each Int(Fα), Cl(N(xp

(ζ,ξ))) ∩ (Int(Fα) ∩ M) , 0̃. The fact
Fα ∩M , 0̃,∀ α ∈ Λ and the assumption that (∩αFα) ∩M = 0̃ give the existence
of an α0 ∈ Λ such that xp

(ζ,ξ) < Fα0 . Therefore , xp
(ζ,ξ) < Int(Fα0 ) so that xp

(ζ,ξ) ∈

(Fα0 )c ⊂ (Int(Fα0 ))c. It then follows that xp
(ζ,ξ) ∈ (Fα0 )c ⊂ Cl((Fα0 )c) ⊂ (Int(Fα0 ))c

254
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which implies Cl((Fα0 )c) ∩ Int(Fα0 ) = 0̃ , but this means F ∝r x. The contradiction
gives (∩αFα) ∩M , 0̃.

(e) ⇒ (f) Let M = {Mα : α ∈ Λ} be a maximal FFFB in a crisp set
M ∈ FFCS(P). Then by (e) M ∝

r
xp

(ζ,ξ) ∈ M so that M →
r

xp
(ζ,ξ) by Theorem

3.5(c).
(f)⇒ (e) Let F = {Mα : α ∈ Λ} be a FFFB in a crisp setM ∈ FFCS(P). Then

∃ a maximal FFFB M such thatM ⊂ F. By (f)M→
r

xp
(ζ,ξ). Appling Theorem 3.5(a)

and (b) we obtain that F ∝
r

xp
(ζ,ξ). �

Theorem 4.9. In a FFTS (P,Ω) the next statements are equivalent:

(a) P is FFC-compact.
(b) For each crisp setM ∈ FFCS(P) and each FFN φ inM, ∃ a FFP xp

(ζ,ξ) ∈

M such that φ ∝
r

xp
(ζ,ξ).

(c) For each crisp set M ∈ FFCS(P) and each universal FFN φ in M ∃ a
FFP xp

(ζ,ξ) ∈ M such that φ→
r

xp
(ζ,ξ).

Proof. Obvious. �

Theorem 4.10. Let (P,Ω) be a FFTS . Then the next conditions are equivalent:

(a) P is FFC-compact.
(b) IfM is a crispFFCS set of P and F is a collection of FFRC sets of P such that

M ⊆ (∩F ∈FF )c ∃ a finite number of elements of F say F1,F2,F3, . . .Fn, such
thatM ⊆ (

⋂n
i=1(Int(Fi)))c.

Proof. (a) ⇒ (b). Suppose that P is FFC-compact. Let M is a crisp FFC set of
P and F is a collection of FFRC sets of P such thatM ⊆ (

⋂
F ∈F F )c =

⋃
F ∈F(F c).

Clearly U = {F c : F ∈ F} is a FFRO cover of M. Since P is FFC-compact,
by Theorem 4.8(b), U has a finite subcover {F c

i : i = 1, 2, 3, . . . n} such that M ⊆⋃n
i=1(Cl(F c

i )). But,
⋃n

i=1(Cl(F c
i )) = (

⋂n
i=1(Int(Fi, )))c Hence,M ⊆ (

⋂n
i=1(Int(Fi, )))c.

(b)⇒ (a). LetM is a crisp FFC set of P. Let F be a collection of FFRO sets of
P such thatM ⊆ (

⋃
F ∈F F ). Put U = {F c : F ∈ F}. Then U is clearly a collection of

FFRC sets of P such thatM ⊆
⋃
F ∈F F =

⋃
F ∈F(F c)c = (

⋂
F ∈F F

c)c. Hence by (b)
∃ a finite number of elements, say F1,F2,F3, . . .Fn, such thatM ⊆ (

⋂n
i=1(Int(Fc

i )))c =

(
⋃n

i=1 Cl(Fi). Hence, P is FFC-compact. �

Definition 4.11. Let F be a FFFB. Then the FFS ∩{Cl(F ) : F ∈ F} is called
Fermatean fuzzy adherent (FFA) set of F.

Definition 4.12. A FFFB F is said to be FFA convergent if every FFO neigh-
borhood of the FFA set of F contains an element of F.

Theorem 4.13. A FFTS (P,Ω) is FFC-compact if and only if every FFO filter
base is FFA convergent.
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Proof. Necessity: Let (P,Ω) be a FFC-compact and F be a FFO filter base with
the FFO setM. Let mathcalN ∈ Ω be a crisp set containingM. Then the collection
U = {(Cl(F ))c : F ∈ F} be a FFO cover of crisp FFC set Nc of P). Since P
is FFC-compact, ∃ a finite sub family {(Cl(Fi))c : i = 1, 2, 3 . . . n} of U such that
Nc ⊂

⋃n
i=1{(Cl(Fi))c} ⊂

⋃n
i=1{F

c
i } =

⋂n
i=1{Fi}. It follows that,

⋂n
i=1{Fi} ⊂ N . Since F

is a FFFB ∃F ∈ F such that F ⊂
⋂n

i=1{Fi} ⊂ N . Hence F is FFA convergent.
Sufficiency: Assume that P is not FFC-compact and every FFO filter base

is FFA convergent. Therefore, ∃ a crisp FFC set F and a FFO cover U =

{Gα}α∈Λ of F such that F 1
⋃n

i=1{Cl(Gαi,)} for every finite sub family of U. Let
Vn = {(Cl(Gαi ))

c : i = 1, 2, 3 . . . n}. Then {Vn} is a FFO filter base. Now,⋂
{Cl(Vn)} =

⋂n
i=1{(Cl(Gαi ))

c} ⊂
⋂n

i=1{(Gαi )
c} ⊂ F c. Therefore ∃ Vn contained

in F c. Hence, F ⊂
⋃n

i=1{(Cl(Gαi ))}, which is a contradiction. �

Theorem 4.14. Let ϕ : (P,Ω) → (Q, τ) be a Fermatean fuzzy continuous surjective
mapping and P is FFC-compact. Then Q is FFC-compact.

Proof. Let M, be a crisp FFC set of Q. Let U = {Gα : α ∈ Λ} be a FFO
cover of Q. Since ϕ is Fermatean fuzzy continuous,ϕ−1(M) is a crisp FFCS of
P and {ϕ−1(Gα) : α ∈ Λ} is a FFO cover of ϕ−1(M) in P. Since P is FFC-
compact, there exists a finite sub family {ϕ−1(Gα1 ), ϕ−1(Gα2 ), ϕ−1(Gα3,) . . . , ϕ

−1(Gαn )}
such that ϕ−1(M) ⊆

⋃n
i=1{Cl(ϕ−1(Gαi ))} ⊆

⋃n
i=1{ϕ

−1(Cl(Gαi ))}. It follows that
M ⊆

⋃n
i=1{Cl(Gαi )}. Hence, Q is FFC-compact. �

Definition 4.15. Let (P,Ω) be a FFTS and Y be a nonempty crisp subset of P. Then
ΩY = {M∩Y :M ∈ Ω}, is said to be the Fermatean fuzzy relative topology on Y and
(Y,ΩY) is called a Fermatean fuzzy subspace (FFSS) of (P,Ω).

Theorem 4.16. Let (Y,ΩY) be a FFSS of a FFTS (P,Ω) andM ∈ FFS (P), then:
(a) M ∈ ΩY ⇔M = Y e O for some O ∈ Ω.
(b) M ∈ FFCS(Y)⇔M = Y e F for some F ∈ FFS C(P).

Theorem 4.17. Let (Y,ΩY) be a FFSS of a FFTS (P,Ω) andM ∈ ΓY. If Y ∈ Ω

thenM ∈ Ω.

Theorem 4.18. Let (Y,ΩY) be a FFSS of a FFTS (P,Ω). Then a FFS MY ∈
FFCS (Y)⇒MY ∈ FFCS (P)⇔ Y ∈ FFCS (P).

Definition 4.19. A crisp subsetM of a FFTS (P,Ω) is called FFC-compact if the
FFSS (M,ΩM) is FFC-compact.

Definition 4.20. A subsetM of a FFTS (P,Ω) is called FFC-compact relative to
Ω if every FFO cover ofM has a finite subfamily whose closure coversM.

Theorem 4.21. Every Fermatean fuzzy closed open crisp subset of a FFC-compact
space is FFC-compact.

Theorem 4.22. Every Fermatean fuzzy closed crisp subset M of an FFC-compact
space (P,Ω) is FFC-compact relative to Ω .
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Proof. Follows from Definition4.20 and Theorem 4.18 �

Theorem 4.23. A FFTS (P,Ω) is FFC-compact if P is the finite union of FFO
C-compact crisp subsets.

Proof. suppose P = M ∪ N where M and N are FFO crisp subsets of P and
(M,ΩM), (N ,ΩN) are FFC-compact. LetK be a crisp FFCS in P and {Gα : α ∈ Λ}

be a FFO cover of K . SinceM ∈ Ω, {Gα ∩M : α ∈ Λ} is a ΩM −FFO cover of the
ΩM − FFC crisp subset K ∩M ofM. By hypothesis
K ∩M ⊂

⋃n
i=1 ΩM −Cl(Gαi ) ∩M ⊂

⋃n
i=1 Cl(Gαi ) for some n ∈ N.

Similarly
K ∩ N ⊂

⋃m
j=1 Cl(Gβ j ), for some m ∈ N.

Hence, K ⊂ (
⋃n

i=1 Cl(Gαi ))
⋃

(∪m
j=1Cl(Gβ j )) which implies that P is FFC -

compact. �

Theorem 4.24. A FFTS (P,Ω) is FFC-compact if P is the finite union of subsets
of P which are FFC-compact relative to Ω.

Proof. Similar to that of Theorem 4.23 �
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