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C-COMPACTNESS IN FERMATEAN FUZZY TOPOLOGY
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Abstract

The studies of Fermatean fuzzy sets and Fermatean fuzzy topology was initiated in the year 2019 and
2022 respectively. The present paper created the concepts of C-compactness, nets and filters in Fermatean
fuzzy topological spaces. Several results related to characterizations and properties of fermaten fuzzy C-
compactness have been established
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1. Introduction

The fusion of technology and generalized forms of classical sets is very useful to
solve many real world complex problems which involve the vague and uncertain
information. A classical set is defined by its characteristic function from universe
of discourse to two point set{0,1}. Classical set theory is insufficient to handle
the complex problems involving vague and uncertain information. To handle the
vagueness and uncertainty of complex problems, Zadeh [19] in 1965, created fuzzy
sets (FSs) as a generalization of classical sets which characterised by membership
function from universe of discourse to closed interval [0,1]. 8 theory is applicable
in various areas such as control theory, artificial intelligence, pattern recognition ,
database system and medical diagnosis. After two years of creation of #Ss, Chang
[3]initiated the study of fuzzy topology. Now fuzzy topology is established a separated
branch of fuzzy mathematics. In the last sixty years sevral generalizations of #Ss
and fuzzy topology was appeared in the literature. Intuitionistic fuzzy sets (I'F Ss)
introduced by Atanassov[1] is a generalization of ¥ Ss characterised by membership
and non-membership functions from an universe of discourse to closed interval [0,1]
whose sum lies between 0 and 1 for each point of universe of discourse. In 1987
Coker [4], created the notion of intuitionistic fuzzy topology. Coker and his coworkers
[5, 6], Thakur and his associates [13—16], Lupianez [8] and others are contributed
in the development of intuitionistic fuzzy topology. In 2013 Yager [18] introduced
Pythagorean fuzzy sets ( PF Ss) characterized by a membership degree and a non-
membership degree whose square sum is less than or equal to one. The collection of
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TaBLE 1. Abbreviations and their descriptions

Abbreviation  Description Abbreviation Description

FS Fuzzy set IFS Intuitionistic fuzzy set
PFS Pythagorean fuzzy set FFS Fermatean fuzzy set
FFSP) Family of #F Ss of P FFT Fermatean fuzzy topology
FFTS Fermatean fuzzy topological space ~ FFO Fermatean fuzzy open
FFreC Fermatean fuzzy closed FFCEP) Family of #FC sets of P
FFRO Fermatean fuzzy regular open FFROP) Family of # 7RO sets of P
FFRC Fermatean fuzzy regular closed FFRCS(P) Family of #F RC sets of P
FFP Fermatean fuzzy point FFF8B Fermatean fuzzy filter base
FFN Fermatean fuzzy net FFA Fermatean fuzzy adherent
FFSS Fermatean fuzzy sub space FFC-compact Fermatean fuzzy C-compact

all PF Ss on a universe of discourse contains the collection of all 7# Ss, but reverse
containments is not true. Obviously, ¥ Ss are more effective than 77 Ss. Peng and
Yang [10], studied Some more results for PF Ss. In 2019, Olgun and his coworkers
[9] introduced pythagorean fuzzy topological spaces and studied continuity and some
important pythagorean fuzzy topological concepts. In 2020 Senapati and Yager[11]
created the concept of Fermatean fuzzy sets (¥ 7 Ss) as a generalization of £¥ Ss . In
another paper they [12] defined some new operations over ¥ Ss and presented their
applications in multi-criteria decision making. Recently Ibrahim [2] created fermaten
fuzzy topological spaces as an extension of pythagorean fuzzy topological spaces and
studied Fermatean fuzzy continuity and Fermatean fuzzy separation axioms. The study
of C-compactness in topology wae initiated by Viglino [17] in 1969. Herrington and
Long [7] gave some characterizations of C-compact spaces. The organization of paper
is as follows. Section 2 is preliminary and review the basic concepts of Fermatean
fuzzy sets and Fermatean fuzzy topology. Section 3 created Fermatean fuzzy nets
and Fermatean fuzzy filters and studied their r-convergence. Section 4 defined and
characterized Fermatean fuzzy C-compact spaces.

2. Preliminaries

DerinTioN 2.1. Let P be an universal set. An structure of the form M = {<
P, om(P), o m(p) >: p € P} is called:

(a) Intuitionistic fuzzy set(ZFS)[1]if 0 < om(p) + opm(p) <1 Yp e P;

(a) Pythagorean fuzzy set(PF S)[18]if 0 < opm(p) + om(p) <1 ¥VpeP;

(a) Fermatean fuzzy set(F FS)[11]if 0 < opm(p) + opm(p) < 1 ¥Vp e P.

Where opq : P — [0,1] and oy : P — [0, 1] are respectively called the membership

and non membership function of M. The collection of all #F Ss of P will be denoted
by FF S(P).

ReMaRk 2.2. [11] Every IF S is aPF S and every PF S isa FF S, but the converse
may not be true.
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DeriniTioN 2.3. [11] Let P be an universe of discourse and M = {< p, om(p), o m(p) >:
pePLN ={< p,on(p),on(p) >: p e P} € FFS(P). Then :

(@ McNifou(p) <on(p)and opm(p) = on(p) Vp €P.

b)) M=Nif MCNand N C M.

© M ={<p,om(p)om(p) >: p P}

(d MON={<p,om(p) Non(p),om(p)V on(p) >: p € P}
() MUN ={<p.om(p)Von(p).omp) ANon(p) >: p €P}.
# 0={<p0,1>pelPhL

(g I1={<p,1,0>:peP}.

DEeriniioN 2.4, [11] Let P be an universe of discourse and {M; : k € A} € FFS(P).
Then:

(a) ﬂMk = {< P> /\QMk(p)’ \/ O'MA(P) >.pe€ P}’
) UM ={<p, Vom(p), Nom(p) >: p € P}.

Dermnrtion 2.5. [2] A collection Q C ¥F S(P) is called a Fermatean fuzzy topology
(FFT)onPif:

(H 0,1eq.

2) G1,G2:€Q=>G1NG €Q.
B) {Gy:ae A} CTQ=Upea{Go : @ e A} € Q.

The structure (P, Q) is called a Fermatean fuzzy topological space (FF7S) and
each FF S in Q is called Fermatean fuzzy open (F FO) setin P. A FFS M is said
to be Fermatean fuzzy closed (FFC) if M¢ € Q. The collection of all #FCS sets in
a FFTS (P,Q) is denoted by FF CS(P).

DEeriNiTION 2.6. [2] Let (P,Q)bea FFT S and M € FF S(P) . Then the interior and
closure of M are defined by:

CIM)y=n{F : F e FFCS(P) and M C F}.
Int(M) = U{H : H € Q and ‘H € M}.

THEOREM 2.7. [2] Let (P,Q)be a FFT S and M € FFS(P). Then:

(@ MeFFCSP) & CIM)=M.
b)) MeQ o Int(M) =M.

() CUM®) = Int(M)).

(d) Int(M°) = (CUM))-.

DeriniTion 2.8. [2] Let P be a non-empty set and p € P a fixed element in P . Suppose
£ € (0,1] and & € [0, 1) are two fixed real numbers such that /> + & < 1. Then, a
Fermatean fuzzy point (¥ ¥ %) xf L6 = {p,0x(p), ocx(p))} is defined to be a FF S of
P given by

_J&e ifg=p
x@’f)(@ B {(O, 1) otherwise,



250 M. Thakur, S. S. Thakur and A.S. Rajput

for g € P. In this case, p is called the support of x( L6 AFFP x( 26 is said to belong

toaFFSF = {p,or(p),ocr(p))} of P denoted by xé,g € Fif { < og(p) and
¢ > or(p). Two FF Ps are said to be distinct if their supports are distinct. The set of
all F ¥ Ps of P will be denoted by FF P(P).

Treorem 2.9. [2] Let My = {(p,om,(p), om,(p))} and My = {(p, QMZ(P),U'MZ(P»}
be two FF Ss of P. Then, M; ¢ M, if and only ifxé’z’f) € My implies x(ﬁ) e M, for
any FFP x(é,f) in P.

DeriniTION 2.10. Two FFS's M and N of P are said to be g-coincident (M, N) if 3
an element p € P such that op(p) > o n(p) or o pm(p) < on(p).

TueoreM 2.11. If M is a crisp set and N is any FF S of a non empty set P. Then
MNON =0 Mc N-

Derinition 2.12. [2] Let P and Q be two non-empty sets and ¢ : P — Q bea
mapping. Let M and N be ¥F Ss of P and Q, respectively. Then:

(a) The membership and non-membership functions of image of M with respect to
¢ that is denoted by ¢(M) are defined by

sup om(r) ifg ' (q) # ¢
CuoM)(q) = {ree™' @
0

otherwise
and
inf opm(r) ife'(q) #¢
O-Lp(M)(Q) = {rep (@)
1 otherwise
respectively.

(b) The membership and non-membership functions of pre-image of N with respect
to ¢ that is denoted by ¢! (N) are respectively defined by 2,1 (P) = on(e(p)
and o1 (p) = on(@(P)).

Derinition 2.13. [2] A mapping ¢ @ (P,Q — (Q,I) is called Fermatean fuzzy
continuous if g '(M) € Q, V M eT.

3. Fermatean fuzzy filters

Dermntion 3.1. Let P be an universe of discourse. A nonempty family § € FF S(P)
is called a Fermatean fuzzy filter base (F ¥ ¥ B) in P if:

@ 0¢%;

b)) FANFeFY Fi1.F2€8;

(©) FrefFadF i CF=>F€F, VF.F2€3.

DermniTion 3.2, Let (P,Q)bea FFTS and N € FFS(P). Then N is called an

e-neighbourhood of a FFP xf[ f) of Pif 3 G € Q such that xf[,g) € G € N. The

family of all an € neighbourhood of x{, -, is denoted by N(X; 4)-
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DermntTion 3.3. Let P be a non empty set and D is a directed set. Amap¢ : D —
FFP(P) is called a Fermatean fuzzy net(F ¥ N). We will write ¢g = ¢(d)(for
d € D), ¢ = (¢a)dep-

DermniTion 3.4. Let (P, Q) be a FF 7S and M be a non empty crisp set of P, let & =
{M,c M:aeAlbeaFFFBin M Then:

@ FFFB §iscalled r-converges to a FFP x(, ., € M (written as § — x; ) if
V N eN(x(,,) I M, € F such that M, € CIN).
(b) FFFB §is called r-accumulates to a FFP x( o € M (written as o xf 1 f))

Y Ne ‘Jt(x(p[f)) and each M, € §, M, N CIN) # 0.

TaeOREM 3.5. Let (P, Q) bea FFT S, M CPand x(( 5)67:7'7’(]?).
(@) LetFisaFFFBin M. If‘&—> ((E)eMthen‘&ocxf[f)

(b) Let § and F, be two FFF B in M and &, is stronger than & (&1 C Fo). If

F2 ¢ xfm €M, then 3 o xfm

(¢) Let 9)3 be a maximal 7—'7:7:8 in M. Then & o .o eMoeF - x?

((£9] ((£9%

Proor. Obvious and left to the readers. m]

DeFiniTION 3.6. Let (P,Q) be a FFT7 S and M be a non empty crisp subset of P.
Suppose D is a directed set and ¢ : D —» FFP(M)isa FFN. then:

. p .
o € M( written as ¢ - x((’f)) if

1 b € D such that ¢(Tp) c CI(V). Where

(a) ¢ is called r-converges to a FFP x”

Y 9V € Q containing x’
Tp={ceD:c=b}.
(b) ¢ called r-accumulates to a FFP x”

(€94

o € M (written as ¢ o« x((f)) ifV VeQ

containing xf ey and YV b € D such that ¢(7,) N CI(V) # 0. Where
T,={ceD:c2>b}

DeriniTioN 3.7. If ¢ : D —» FFP(M) is a FFN in M c P. Then the family
F(P) = {d(Tp) : c € D}isa FFF Bin M called a FF F B associated to ¢.
THEOREM 3.8. Let (P,Q) be a FFT S. If §(¢) is a FFF B in M C P associated to
FFN ¢. Then
(@ F) - x(m eEMoe ¢ - x(m
b) &) °§ Xpo EM S o x(,:,f)'

Proor. Obvious. a

DermniTion 3.9. Let P be a non empty set and M be a crisp subset of P . Let & be a
FFF B in P then consider the family Dy = {(x;, Rk X € FFPM), "

(€3] ’ ((f)
F,F € ¥} with the relation (xf’(f),i") < F'y © F' C F .Then the

<
P
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FFN ¢5 : Dy > FFP(M) such that ¢<;(xf“),7:) = xf“) is called called FFN
associate to §. ’

THEOREM 3.10. In a FFTS P,Q), If ¢p5 : D » FFPM)isa FFN in M cC P
associated to a F FFB §. then:

(a) %—>x(meM<:>¢@—>x

(b) Focal, e Mo gy oal

(#9)
(£

Proor. (a)Necessity. Since & r-converges to xf 26 mM, VY Ne ‘J?(xf 06

YA My eF
such that M, c CI(N). Forevery FFP x? . suchthatx?, . € M,, (x?

o Y ey Ma) € Dy
If(x((sc), Mpg) € Dg and (x(éu o Mpg) > (x(“), M,) then x(( 5 € Mg and Mg € M, Thus

¢l,(x(§ §)’Mﬁ) ({5) € M, c CI(N).Hence ¢5 - x‘(”“)

Sufficiency. Since ¢3 r-converges to x*, . in M, ¥ N € ‘Jt(x( ) 3 (xT0

) (5 Mo) €
Dg such that ¢i~\,(x?{’§),Ma) = x?{’f) eM, cCIN) VY (x((’f), M, > (x({’f),Mo).

This implies that My € M, because ¥ FFP x!.. inP x! . € M, we have

((£3) .
My = (.X?;’g),M()), x?(’é) € M,. Consequently, My C CI(N). Hence,
e M.

q
(X e

§ - X

(b)Necessity. Since & r-accumulates to xf[ o inM, VY Ne€ ‘ﬁ(xf( oI M €T

such that M, N CI(N) # 0. For every FFP x(( 5 such that x(“) e Mg, (x7
Dg If(x(gf),M/;) S Dg and (X M/;) = (X

o (¢ Ma) then (xf
Mq. Thus ¢g(x% ., Mg) = € M,. This implies that ¢ (x?
Hence, ¢g o x7
r

e Ma) €
€ Mg and Mg C

Mp) N CIUN) # 0.

€6
(( &)’ &€y

((£90

({ &)

Sufficiency. Since ¢ r-accumulates to x( 26
Dy such that ¢3(x{; ., Mo) = x(; ) € Mo and ¢(x(; ), MINCIN) # 0, ¥ (xf, ), Ma) =
(x?é’,g), Mo). This implies that My C M, because YV FFP x({ o inP x(“) € My we
have (x([’f),Mo) > (x((f),Mo), x({’f) € M,. Consequently, M, N CI(N) # 0. Hence,

P
i3 x Xz g) in M. |

P 40
inM,V N e ‘Jt(x((’f))ﬂ (X(_(é),Mo) €

4. Fermatean fuzzy C-compactness

DeriniTION 4.1. A family {Qai a€eAlof FFSsofa FFTS (P,Q)is called a
Fermatean fuzzy cover of P if 1 = Upep{Go}-

DeriniTioN 4.2. A FFTS (P, Q) is called Fermatean fuzzy compact if every FF O
cover of P has a finite sub cover.

DermniTion 4.3. A FFT S (P, Q) is said to be Fermatean fuzzy C-compact(FF C-
compact) if ¥ properF FC crisp set M of (P) and ¥V FFO cover {G, : @ € A} of
M, 3 afinite number of elements Gy, , G, » Gass - - - G, sSuch that M C L {CU(Ga,)}.
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THeOREM 4.4. Let (P,QQ) be a FFT S . If P is Fermatean fuzzy compact then it is
FF C- compact.

Proor. Easy and left to the readers. O

DeriNniTioN 4.5. A FFS Mina FFTS (P, Q) is called:

(a) Fermatean fuzzy regular open (¥ ¥ RO) if M = Int(CI(M)).The collection of all
FF RO sets of P will be denoted by ¥ F ROS(P).

(b) Fermatean fuzzy regular closed (F FRC) if M¢ € FFROS(P).The collection of
all FFRC sets of P will be denoted by FFRCS(P).

REMARK 4.6. Ina FFTS (P,Q) , FFROSP) Cc Q and FFRCS(P) c FFCS(P),

but the reverse containment may not be true.

Example Let P = {p;, p>} be an universe of discourse and Q = {0, M, ~}
aFFT onP. Where, M = {< p;,0.8,0.7 >,< p,,0.7,0.8 >}. Then M €
(resp. M € FFCS(P)) but M ¢ FFROS(P) (resp. M ¢ FFRCS(P)).

THEOREM 4.7. Let (P,Q) be a FFTS and M € FFSP). Then Int(Cl(M)) €
FFROS(P) and Cl(Int(M)) € FFRCS(P).

THEOREM 4.8. In a FFT S (P, Q) the next statements are equivalent:

(a) PisFFC-compact.

(b) For each FFC crisp set M of P and each FFRO cover G = {G, : @ € A}
of M 3 a finite number of elements Gq,,Ga,.»Gass---Ga, Of G such that
ME UL, ClGay.

(¢c) For each crisp set M € FFCS(P) and for each collection F = {F, : a € A} of
non empty FF RC sets of P such that (Neea¥o) N M =0, 3 a finite number of
elements Fo,, Fars Fas,» - - Fa, of F such that (., Int(Fo,)) N M = 0.

(d) For each crisp set M € T?CS(P) and for each collection F = {F, : @ € A} of
FFRC sets of P, if for each finite subcollection {Fo,, Fa,» Fass - -+ Fa, ), of F has
the property that (., (Int(F,)) N M # 0, then (NgeaFa) N M # 0.

(e) For each crisp set M € FFCS(P) and each FFFB § = {M, : @ € A} in

M HaTTang) € M such thati}ocx({f)

(f)  For each crisp set M € FFCS(P) and each maximal FFFB M ={M, : @ €

A)in M HaTTPxf“) € M such thati)ﬁocxf(f)

Proor. (a) = (b) Follows easily from Definition 4.3 and Remark 4.6.

(b) = (a). Suppose (b) holds.Let {G, : @ € A} be a FF O cover of a crisp set
M e FFCS(P) . Then by thm {Int(Cl(G,)) : @ € A}. will be FF RO cover of M.
Therefore , by (b) 3 a finite sub collection {Int(Cl(G,,)) : i = 1,2,3...n} such that
M c Ui, Cldnt(CUG.,)) = UL, CUG,,).. Consequently, M c |, Cl(G,,) and P
is FF C-compact.

(b) = (c). Let M be acrisp FFCS of P. Let ¥ = {F, : @ € A} be a collection of
non empty FFRC sets of P such that (N{F, : @ € A}) N M = 0 for each proper
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crisp set M € FFCS(P). Then U = {FF : @ € A} is FFRO cover of crisp
set MFFCS(P). Therefore I a finite sub collection {G,, = Fy : i = 1,2,3...n}
of U such that M c UL, Cl(G.,). Now for each @; we have, Int(F,,) = Int(G;,) =
(CUG,) ) = CUG,). Therefore (L, Int(Fa,) = UL (CUG.,))¢ = MC. This shows
that L, (Int(Fo, ) N M= M N M= 0, because M is a crisp set of P.

(¢) = (b). Letd = {Gy : @ € A} be a FFRO cover of a proper crisp set
M € FFCS(P). Therefore, M C Jyep Go- It follows that M 2 (Uyen Go)© =
Naer Gof. And 50, (NeerGo®) N M c M N M = 0, because M is a crisp set of P.
Therefore ¥ = {G, : @ € A} is a collection of non empty #FRCSs of P, satisfying
(Neea®) N M = 0. And so by (c) , I a finite sub collection Gg, i=1,2,3...n}
of  such that "L, (Int(G;)) N M = 0. It follows that, M c UL (Int(G5,))°). Now
for each @; we have, Ini(G;,) = (CUG,))" = Cl(G,,)°. Therefore, we obtain that
Mc UL, Cl(Ga).

(¢) > (d). Let M be a crisp FFC set of P. Let ¥ = {F, : @ € A} be
a collection of non empty FF RC sets of P such that for every finite subcollec-
tion {Fo, Far> Fass- - - Fa,} Jof F we have N, Int(Fo,) N M # 0. We want to
show that (NF,) N M # 0. If (NF,) N M = 0, Then by (c), 3 a finite family
{Fars Fars Fazs - - - Fa, ). such that (L, Int(Fp,) N M = 0, which is a contradiction.
Hence (NF,) N M # 0.

(d) = (¢). Le Mbe acrisp FFC set of Pand ¥ = {F, : @ € A} be a collection
of non empty# F RC sets of P such that (NF,,) N M = 0. We have to show that 3
a finite integer (say) n such that (", int(F,,) N M = 0. Suppose now that for every
finite integer n we have (., Int(%,,) N M # 0. Then by (d) we have (N"F,) " M # 0
which is a contradiction.

(@) => (e). Suppose I FFFB &F = {M, : @ € A} in M, such that F « x

P
(%)
all FFP x(, . € M. Then ¥ x(, ., € M I N(x{, ) € Q and some M » ) € & such

a(x([
that Ma(x&f)) N Cl(N(xfgyg))) = 0. The collection {N(x&’f)) : x‘(’z’a e M}isa FFO

cover of M, so by (a) I a finite sub collection {N(xf(i’&)) 1 =1,2,3,...,n} such
that M c UL, Cl(N(xfg,-,g,-))‘ Let M,, € & such that M,, ¢ N7, Ma/(x(”[_f‘))- Since
M,, # 0 there is some 1 < j < n such that M,, N CI(N (xfg,,gj))) # 0. This implies

thatMa%fﬂ) N Cl(N(xf{j,fj))

(e) = (d). Suppose 1 a crisp M € FFCS(P) and a collection {F, : @ € A}
of FFRC sets of P such that each finite subcollection {¥,, : i = 1,2,3,...,n} has a
property that (N, Int(F,,))NM # 0, but (N, F,)NM = 0. Then (Int(Fo,))NM, @ € A,
together with all finite intersection of the form N_, (Int(F,)) "N M, forma FFF B §

in M. Then by (e) & r-accumulates to some FFP x’,, € M. Thus V N

)
5 v o
f(,-f) and each Int(F,), Cl(N(x&’f))) N (Int(Fy) N M) # 0. The fact

FoNM#0,Y ac A and the assumption that (N,F,) N M = 0 give the existence

of an @y € A such that xf{,g) ¢ Fa,- Therefore , x‘é’g) ¢ Int(F,,) so that xf“) €

(Fao)® © (Int(F,)). It then follows that x0) € (Fo)* C CU(Fa)) © (Int(Foy))

for

) # 0 which is a contradiction .

containing x
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which implies CI((Fo,)) N Int(Fy,) = 0 , but this means § «, x. The contradiction
gives (NgFo) N M # 0.

(e) > (f) Let M = {M, : @ € A} be a maximal TTTB in a crisp set
M € FFCS(P). Then by () M o xf{’f) € M so that M - x”, .. by Theorem
3.5(c).

H=ELetF={M,:aeAlbeaFFFBina crisp set M € FFCS(P). Then
Jamaximal FFF B It such that M c F. By (f) M - x”, ... Appling Theorem 3.5(a)

(€3]

(€I
and (b) we obtain that & « x( L6 O
THEOREM 4.9. In a FFT S (P, Q) the next statements are equivalent:
(a) PisFFC-compact.
(b) For each crisp set M € FFCSP) and each FFN ¢in M, Aa FFP xf 6 €

M such that ¢ « x(( s

(¢) For each crisp set M € FFCS(P) and each universal FFN ¢ in M 3 a

FFP x'. . € Msuch that ¢ - x’

(9] ((£9)

Proor. Obvious. m]

THEOREM 4.10. Let (P,Q) be a FFT S . Then the next conditions are equivalent:

(a) Pis FFC-compact.

(b) If MisacrispFFCS set of P and & is a collection of T 7 RC sets of P such that
M C (NgexF)E 3 a finite number of elements of & say F1, %2, F3,...Fn, such
that M C (N, Int(F7)))".

Proor. (a) = (b). Suppose that P is ¥ % C-compact. Let M is a crisp FF C set of
P and & is a collection of 7 RC sets of P such that M C (Ngez F)° = Ugex(FO).
Clearly U = {F¢ : F € &} is a FFRO cover of M. Since P is FF C-compact,
by Theorem 4.8(b), U has a finite subcover {F : i = 1,2,3,...n} such that M C
ULy (CHF)). But, UL (CF)) = (O, (Ini(F7,)))* Hence, M € (O, (Ini(F:, )"
(b) = (a). Let M s a crisp FF C set of P. Let & be a collection of FF RO sets of
P such that M C (Ugez F). Put U = {F¢ : F € §}. Then U is clearly a collection of
FFRC sets of P such that M C Ugpeg F = Ugex(F) = (Ngez F)°. Hence by (b)
J a finite number of elements, say ¥, %2, 73, . . . ¥, such that M C ("L, (Int(F¥)))* =
(UL, CI(F;). Hence, P is ¥ F C-compact. O

DerinTiON 4.11. Let § be a FFF B. Then the FFS N{CIF) : F € F}is called
Fermatean fuzzy adherent (¥ F.A) set of &.

DeriNiTION 4.12. A FFF B § is said to be FF A convergent if every FF O neigh-
borhood of the FF A set of § contains an element of .

Tueorem 4.13. A FFTS (P,Q) is FF C-compact if and only if every FF O filter
base is FF A convergent.
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Proor. Necessity: Let (P, Q) be a FF C-compact and § be a FF O filter base with
the FF O set M. Let mathcalN € Q be a crisp set containing M. Then the collection
U = {(CI(F)) : F € §} be a FFO cover of crisp FFC set N of P). Since P
is FF C-compact, 3 a finite sub family {(CI(F;))‘ : i = 1,2,3...n} of U such that
N¢ c U I(CUFH) Y c UL AF< = Nie {F). Tt follows that, N7, {7} € N. Since §
isaFFFB AF € Fsuchthat ¥ c (. ,{F;} € N. Hence § is ¥ F A convergent.
Sufficiency: Assume that P is not % C-compact and every ¥ 7 O filter base
is FF A convergent. Therefore, 3 a crisp FFC set ¥ and a FFO cover U =
{Golaen of F such that 7 ¢ (J.,{CI(G,;,)} for every finite sub family of . Let
YV, = {(CU(Gy,))¢ : i = 1,2,3...n}. Then {V,} is a FFO filter base. Now,
MCUV)) = NLACUG)) Y € ML {(Ga)} © F¢. Therefore 3 V, contained
in 7. Hence, ¥ C U {(Cl(Ga,))}, which is a contradiction. O

THEOREM 4.14. Let ¢ : (P,Q) — (Q,7) be a Fermatean fuzzy continuous surjective
mapping and P is FF C-compact. Then Q is FF C-compact.

Proor. Let M, be a crisp FFC set of Q. Let U = {G, : @« € A} be a FFO
cover of Q. Since ¢ is Fermatean fuzzy continuous,e™'(M) is a crisp FFCS of
P and {¢"(G,) : @ € A}is a FFO cover of ¢"'(M) in P. Since P is FFC-
compact, there exists a finite sub family {¢™1(Ga,), ¢ (Ga), ¢ 1 (Gas) - - - 1 (Ga,)}
such that o' (M) € U (Cle ™ (Ga))} € UL lg” (CUG,))). Tt follows that

i=1

Mc UL {Cl(G,,)}. Hence, Q is FF C-compact. O

DermntTioN 4.15. Let (P, Q) be a FF 7 S and Y be a nonempty crisp subset of P. Then
Qy ={MnNY : Me Q},is said to be the Fermatean fuzzy relative topology on Y and
(Y, Qy) is called a Fermatean fuzzy subspace (¥ F SS) of (P, Q).

THEOREM 4.16. Let (Y,Qy) be a FFSS of a FFT S (P,Q) and M € FFS (P), then:
(a) MeQy o M=YnO for some O € Q.

(b)) MeFFCSY) e M=YnNF for someF € FFSC(P).

THEOREM 4.17. Let (Y,Qy) be a FFSS of a FFTS (P,Q) andM € T'y. If Y € Q
then M € Q.

THEOREM 4.18. Let (Y,Qy) be a FFSS of a FFTS (P,Q). Then a FFS My €
FFCS(Y)=> My €e FFCS(P) © Y € FFCS (P).

DerNITION 4.19. A crisp subset M of a FFT S (P, Q) is called ¥ F C-compact if the
FFSS M, Qy) is FF C-compact.

DerintTION 4.20. A subset M ofa FFT S (P, Q) is called ¥ F C-compact relative to
Q if every FF O cover of M has a finite subfamily whose closure covers M.

THEOREM 4.21. Every Fermatean fuzzy closed open crisp subset of a ¥ 5 C-compact
space is FF C-compact.

THEOREM 4.22. Every Fermatean fuzzy closed crisp subset M of an FF C-compact
space (P, Q) is FF C-compact relative to Q..
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Proor. Follows from Definition4.20 and Theorem 4.18 m]

TueorEM 4.23. A FFTS (P,Q) is FF C-compact if P is the finite union of ¥ ¥ O
C-compact crisp subsets.

Proor. suppose P = M U N where M and N are FF O crisp subsets of P and
M, Qp), (N, Q) are FF C-compact. Let K be acrisp FFCSinPand {G, : a € A}
be a FFO cover of K. Since M € Q, {G, N M : a € A}isaQup —FFO cover of the
Qp — FFC crisp subset K N M of M. By hypothesis

KnMc UL Qum—Cl(Go,) N M UL, Cl(G,,) for some n € N.
Similarly

KnNnNc U’]’.’:1 Cl(Gg,), for some m € N.

Hence, K c (UL, Cl(Ga)) U(U;”:lCl(gﬁj)) which implies that P is FFC -
compact. O

TueorEM 4.24. A FFTS (P,Q) is FF C-compact if P is the finite union of subsets
of P which are FF C-compact relative to Q.

Proor. Similar to that of Theorem 4.23 m]
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