C-COMPACTNESS IN FERMATEAN FUZZY TOPOLOGY # MAHIMA THAKUR, SAMAJH SINGH THAKUR [™] and ALPA SINGH RAJPUT #### Abstract The studies of Fermatean fuzzy sets and Fermatean fuzzy topology was initiated in the year 2019 and 2022 respectively. The present paper created the concepts of C-compactness, nets and filters in Fermatean fuzzy topological spaces. Several results related to characterizations and properties of fermaten fuzzy C-compactness have been established 2010 Mathematics subject classification: primary 54A40; secondary 54D30. Keywords and phrases: Fermaten fuzzy set, Fermatean fuzzy topology, Fermatean fuzzy C-compactness. #### 1. Introduction The fusion of technology and generalized forms of classical sets is very useful to solve many real world complex problems which involve the vague and uncertain information. A classical set is defined by its characteristic function from universe of discourse to two point $set\{0,1\}$. Classical set theory is insufficient to handle the complex problems involving vague and uncertain information. To handle the vagueness and uncertainty of complex problems, Zadeh [19] in 1965, created fuzzy sets ($\mathcal{F}S$ s) as a generalization of classical sets which characterised by membership function from universe of discourse to closed interval [0,1]. FS theory is applicable in various areas such as control theory, artificial intelligence, pattern recognition, database system and medical diagnosis. After two years of creation of \mathcal{FS} s, Chang [3]initiated the study of fuzzy topology. Now fuzzy topology is established a separated branch of fuzzy mathematics. In the last sixty years sevral generalizations of \mathcal{FS} s and fuzzy topology was appeared in the literature. Intuitionistic fuzzy sets $(I\mathcal{F}Ss)$ introduced by Atanassov[1] is a generalization of \mathcal{FS} s characterised by membership and non-membership functions from an universe of discourse to closed interval [0,1] whose sum lies between 0 and 1 for each point of universe of discourse. In 1987 Coker [4], created the notion of intuitionistic fuzzy topology. Coker and his coworkers [5, 6], Thakur and his associates [13–16], Lupianez [8] and others are contributed in the development of intuitionistic fuzzy topology. In 2013 Yager [18] introduced Pythagorean fuzzy sets (\mathcal{PFS} s) characterized by a membership degree and a nonmembership degree whose square sum is less than or equal to one. The collection of | Abbreviation | Description | Abbreviation | Description | |--|---|--|---| | \mathcal{FS} | Fuzzy set | $I\mathcal{FS}$ | Intuitionistic fuzzy set | | \mathcal{PFS} | Pythagorean fuzzy set | \mathcal{FFS} | Fermatean fuzzy set | | $\mathcal{FFS}(\mathbb{P})$ | Family of \mathcal{FFS} s of \mathbb{P} | $\mathcal{F}\mathcal{F}\mathcal{T}$ | Fermatean fuzzy topology | | \mathcal{FFTS} | Fermatean fuzzy topological space | $\mathcal{F}\mathcal{F}\mathcal{O}$ | Fermatean fuzzy open | | \mathcal{FFC} | Fermatean fuzzy closed | $\mathcal{FFC}(\mathbb{P})$ | Family of \mathcal{FFC} sets of \mathbb{P} | | $\mathcal{F}\mathcal{F}\mathcal{R}\mathcal{O}$ | Fermatean fuzzy regular open | $\mathcal{FFRO}(\mathbb{P})$ | Family of \mathcal{FFRO} sets of \mathbb{P} | | \mathcal{FFRC} | Fermatean fuzzy regular closed | $\mathcal{FFRCS}(\mathbb{P})$ | Family of \mathcal{FFRC} sets of \mathbb{P} | | $\mathcal{F}\mathcal{F}\mathcal{P}$ | Fermatean fuzzy point | $\mathcal{F}\mathcal{F}\mathcal{F}\mathcal{B}$ | Fermatean fuzzy filter base | | \mathcal{FFN} | Fermatean fuzzy net | $\mathcal{F}\mathcal{F}\mathcal{A}$ | Fermatean fuzzy adherent | | FFSS | Fermatean fuzzy sub space | \mathcal{FFC} -compact | Fermatean fuzzy C-compact | TABLE 1. Abbreviations and their descriptions all \mathcal{PFS} s on a universe of discourse contains the collection of all IFSs, but reverse containments is not true. Obviously, \mathcal{PFS} s are more effective than $I\mathcal{FS}$ s. Peng and Yang [10], studied Some more results for PFSs. In 2019, Olgun and his coworkers [9] introduced pythagorean fuzzy topological spaces and studied continuity and some important pythagorean fuzzy topological concepts. In 2020 Senapati and Yager[11] created the concept of Fermatean fuzzy sets $(\mathcal{FFS}s)$ as a generalization of $\mathcal{PFS}s$. In another paper they [12] defined some new operations over \mathcal{FFS} s and presented their applications in multi-criteria decision making. Recently Ibrahim [2] created fermaten fuzzy topological spaces as an extension of pythagorean fuzzy topological spaces and studied Fermatean fuzzy continuity and Fermatean fuzzy separation axioms. The study of C-compactness in topology wae initiated by Viglino [17] in 1969. Herrington and Long [7] gave some characterizations of C-compact spaces. The organization of paper is as follows. Section 2 is preliminary and review the basic concepts of Fermatean fuzzy sets and Fermatean fuzzy topology. Section 3 created Fermatean fuzzy nets and Fermatean fuzzy filters and studied their r-convergence. Section 4 defined and characterized Fermatean fuzzy C-compact spaces. #### 2. Preliminaries DEFINITION 2.1. Let \mathbb{P} be an universal set. An structure of the form $\mathcal{M} = \{ < p, \varrho_{\mathcal{M}}(p), \sigma_{\mathcal{M}}(p) >: p \in \mathbb{P} \}$ is called: - (a) Intuitionistic fuzzy set($I\mathcal{F}S$)[1] if $0 \le \varrho_{\mathcal{M}}(p) + \sigma_{\mathcal{M}}(p) \le 1 \ \forall p \in \mathbb{P}$; - (a) Pythagorean fuzzy set(\mathcal{PFS})[18] if $0 \le \rho_{\mathcal{M}}(p) + \sigma_{\mathcal{M}}(p) \le 1 \ \forall p \in \mathbb{P}$; - (a) Fermatean fuzzy set(\mathcal{FFS})[11] if $0 \le \varrho_{\mathcal{M}}(p) + \sigma_{\mathcal{M}}(p) \le 1 \ \forall p \in \mathbb{P}$. Where $\varrho_{\mathcal{M}}: \mathbb{P} \to [0,1]$ and $\sigma_{\mathcal{M}}: \mathbb{P} \to [0,1]$ are respectively called the membership and non membership function of \mathcal{M} . The collection of all \mathcal{FFS} s of \mathbb{P} will be denoted by $\mathcal{FFS}(\mathbb{P})$. Remark 2.2. [11] Every IFS is a PFS and every PFS is a FFS, but the converse may not be true. DEFINITION 2.3. [11] Let \mathbb{P} be an universe of discourse and $\mathcal{M} = \{ \langle p, \varrho_{\mathcal{M}}(p), \sigma_{\mathcal{M}}(p) \rangle : p \in \mathbb{P} \}$, $\mathcal{N} = \{ \langle p, \varrho_{\mathcal{N}}(p), \sigma_{\mathcal{N}}(p) \rangle : p \in \mathbb{P} \} \in \mathcal{FFS}(\mathbb{P})$. Then : - (a) $\mathcal{M} \subseteq \mathcal{N}$ if $\varrho_{\mathcal{M}}(p) \leq \varrho_{\mathcal{N}}(p)$ and $\sigma_{\mathcal{M}}(p) \geq \sigma_{\mathcal{N}}(p) \ \forall p \in \mathbb{P}$. - (b) $\mathcal{M} = \mathcal{N} \text{ if } \mathcal{M} \subseteq \mathcal{N} \text{ and } \mathcal{N} \subseteq \mathcal{M}.$ - (c) $\mathcal{M}^{c} = \{ \langle p, \sigma_{\mathcal{M}}(p), \varrho_{\mathcal{M}}(p) \rangle : p \in \mathbb{P} \}.$ - (d) $\mathcal{M} \cap \mathcal{N} = \{ \langle p, \varrho_{\mathcal{M}}(p) \land \varrho_{\mathcal{N}}(p), \sigma_{\mathcal{M}}(p) \lor \sigma_{\mathcal{N}}(p) >: p \in \mathbb{P} \}$ - (e) $\mathcal{M} \cup \mathcal{N} = \{ \langle p, \rho_{\mathcal{M}}(p) \vee \rho_{\mathcal{N}}(p), \sigma_{\mathcal{M}}(p) \wedge \sigma_{\mathcal{N}}(p) >: p \in \mathbb{P} \}.$ - (f) $\tilde{0} = \{ < p, 0, 1 > : p \in \mathbb{P} \}.$ - (g) $\tilde{1} = \{ < p, 1, 0 > : p \in \mathbb{P} \}.$ DEFINITION 2.4. [11] Let \mathbb{P} be an universe of discourse and $\{\mathcal{M}_k : k \in \Lambda\} \subseteq \mathcal{FFS}(\mathbb{P})$. Then: - (a) $\cap \mathcal{M}_k = \{ \langle p, \wedge \varrho_{\mathcal{M}_k}(p), \vee \sigma_{\mathcal{M}_k}(p) \rangle : p \in \mathbb{P} \};$ - (b) $\bigcup \mathcal{M}_k = \{ \langle p, \bigvee \varrho_{\mathcal{M}_k}(p), \bigwedge \sigma_{\mathcal{M}_k}(p) \rangle : p \in \mathbb{P} \}.$ Definition 2.5. [2] A collection $\Omega \subseteq \mathcal{FFS}(\mathbb{P})$ is called a Fermatean fuzzy topology (\mathcal{FFT}) on \mathbb{P} if: - (1) $\tilde{0}, \tilde{1} \in \Omega$. - (2) $\mathcal{G}_1, \mathcal{G}_2 \in \Omega \Rightarrow \mathcal{G}_1 \cap \mathcal{G}_2 \in \Omega$. - (3) $\{G_{\alpha} : \alpha \in \Lambda\} \subseteq \Omega \Rightarrow \bigcup_{\alpha \in \Lambda} \{G_{\alpha} : \alpha \in \Lambda\} \in \Omega.$ The structure (\mathbb{P}, Ω) is called a Fermatean fuzzy topological space (\mathcal{FFTS}) and each \mathcal{FFS} in Ω is called Fermatean fuzzy open (\mathcal{FFO}) set in \mathbb{P} . A \mathcal{FFS} \mathcal{M} is said to be Fermatean fuzzy closed (\mathcal{FFC}) if $\mathcal{M}^c \in \Omega$. The collection of all \mathcal{FFCS} sets in a \mathcal{FFTS} (\mathbb{P}, Ω) is denoted by $\mathcal{FFCS}(\mathbb{P})$. DEFINITION 2.6. [2] Let (\mathbb{P}, Ω) be a \mathcal{FFTS} and $\mathcal{M} \in \mathcal{FFS}(\mathbb{P})$. Then the interior and closure of \mathcal{M} are defined by: $$Cl(\mathcal{M}) = \bigcap \{ \mathcal{F} : \mathcal{F} \in \mathcal{FFCS}(\mathbb{P}) \text{ and } \mathcal{M} \subset \mathcal{F} \}.$$ $$Int(\mathcal{M}) = \bigcup \{ \mathcal{H} : \mathcal{H} \in \Omega \text{ and } \mathcal{H} \subseteq \mathcal{M} \}.$$ Theorem 2.7. [2] Let (\mathbb{P}, Ω) be a \mathcal{FFTS} and $\mathcal{M} \in \mathcal{FFS}(\mathbb{P})$. Then: - (a) $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P}) \Leftrightarrow Cl(\mathcal{M}) = \mathcal{M}$. - (b) $\mathcal{M} \in \Omega \Leftrightarrow Int(\mathcal{M}) = \mathcal{M}$. - (c) $Cl(\mathcal{M}^c) = (Int(\mathcal{M}))^c$. - (d) $Int(\mathcal{M}^c) = (Cl(\mathcal{M}))^c$. DEFINITION 2.8. [2] Let $\mathbb P$ be a non-empty set and $p \in \mathbb P$ a fixed element in $\mathbb P$. Suppose $\zeta \in (0,1]$ and $\xi \in [0,1)$ are two fixed
real numbers such that $\zeta^3 + \xi^3 \leq 1$. Then, a Fermatean fuzzy point $(\mathcal F\mathcal F\mathcal P)$ $x^p_{(\zeta,\xi)} = \{\langle p,\varrho_x(p),\sigma_x(p)\rangle\}$ is defined to be a $\mathcal F\mathcal F\mathcal S$ of $\mathbb P$ given by $$x_{(\zeta,\xi)}^p(q) = \begin{cases} (\zeta,\xi) & \text{if } q = p\\ (0,1) & \text{otherwise }, \end{cases}$$ for $q \in \mathbb{P}$. In this case, p is called the support of $x^p_{(\zeta,\xi)}$. A \mathcal{FFP} $x^p_{(\zeta,\xi)}$ is said to belong to a $\mathcal{FFSF} = \{\langle p, \varrho_{\mathcal{F}}(p), \sigma_{\mathcal{F}}(p) \rangle\}$ of \mathbb{P} denoted by $x^p_{(\zeta,\xi)} \in \mathcal{F}$ if $\zeta \leq \varrho_{\mathcal{F}}(p)$ and $\xi \geq \sigma_{\mathcal{F}}(p)$. Two \mathcal{FFP} s are said to be distinct if their supports are distinct. The set of all \mathcal{FFP} s of \mathbb{P} will be denoted by $\mathcal{FFP}(\mathbb{P})$. THEOREM 2.9. [2] Let $\mathcal{M}_1 = \{\langle p, \varrho_{\mathcal{M}_1}(p), \sigma_{\mathcal{M}_1}(p) \rangle\}$ and $\mathcal{M}_2 = \{\langle p, \varrho_{\mathcal{M}_2}(p), \sigma_{\mathcal{M}_2}(p) \rangle\}$ be two \mathcal{FFS} s of \mathbb{P} . Then, $\mathcal{M}_1 \subset \mathcal{M}_2$ if and only if $x_{(\zeta,\xi)}^p \in \mathcal{M}_1$ implies $x_{(\zeta,\xi)}^p \in \mathcal{M}_2$ for any \mathcal{FFP} $x_{(\zeta,\xi)}^p$ in \mathbb{P} . DEFINITION 2.10. Two \mathcal{FFS} s \mathcal{M} and \mathcal{N} of \mathbb{P} are said to be q-coincident $(\mathcal{M}_q\mathcal{N})$ if \exists an element $p \in \mathbb{P}$ such that $\varrho_{\mathcal{M}}(p) > \sigma_{\mathcal{N}}(p)$ or $\sigma_{\mathcal{M}}(p) < \varrho_{\mathcal{N}}(p)$. Theorem 2.11. If \mathcal{M} is a crisp set and \mathcal{N} is any \mathcal{FFS} of a non empty set \mathbb{P} . Then $\mathcal{M} \cap \mathcal{N} = \tilde{0} \Leftrightarrow \mathcal{M} \subset \mathcal{N}^c$. DEFINITION 2.12. [2] Let \mathbb{P} and \mathbb{Q} be two non-empty sets and $\varphi: \mathbb{P} \to \mathbb{Q}$ be a mapping. Let \mathcal{M} and \mathcal{N} be \mathcal{FFS} s of \mathbb{P} and \mathbb{Q} , respectively. Then: (a) The membership and non-membership functions of image of \mathcal{M} with respect to φ that is denoted by $\varphi(\mathcal{M})$ are defined by $$\varrho_{\varphi(\mathcal{M})}(q) = \begin{cases} \sup_{r \in \varphi^{-1}(q)} \varrho_{\mathcal{M}}(r) & \text{if } \varphi^{-1}(q) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$ and $$\sigma_{\varphi(\mathcal{M})}(q) = \begin{cases} \inf_{r \in \varphi^{-1}(q)} \sigma_{\mathcal{M}}(r) & \text{if } \varphi^{-1}(q) \neq \phi \\ 1 & \text{otherwise} \end{cases}$$ respectively. (b) The membership and non-membership functions of pre-image of \mathcal{N} with respect to φ that is denoted by $\varphi^{-1}(\mathcal{N})$ are respectively defined by $\varrho_{\varphi^{-1}(\mathcal{N})}(p) = \varrho_{\mathcal{N}}(\varphi(p))$ and $\sigma_{\varphi^{-1}(\mathcal{N})}(p) = \sigma_{\mathcal{N}}(\varphi(p))$. Definition 2.13. [2] A mapping $\varphi: (\mathbb{P}, \Omega \to (\mathbb{Q}, \Gamma))$ is called Fermatean fuzzy continuous if $\varphi^{-1}(\mathcal{M}) \in \Omega$, $\forall \mathcal{M} \in \Gamma$. ## 3. Fermatean fuzzy filters Definition 3.1. Let \mathbb{P} be an universe of discourse. A nonempty family $\mathfrak{F} \subseteq \mathcal{FFS}(\mathbb{P})$ is called a Fermatean fuzzy filter base (\mathcal{FFFB}) in \mathbb{P} if: - (a) $\tilde{0} \notin \mathfrak{F}$; - (b) $\mathcal{F}_1 \cap \mathcal{F}_2 \in \mathfrak{F}, \forall \mathcal{F}_1, \mathcal{F}_2 \in \mathfrak{F};$ - (c) $\mathcal{F}_1 \in \mathfrak{F}$ and $\mathcal{F}_1 \subseteq \mathcal{F}_2 \Rightarrow \mathcal{F}_2 \in \mathfrak{F}$, $\forall \mathcal{F}_1, \mathcal{F}_2 \in \mathfrak{F}$. DEFINITION 3.2. Let (\mathbb{P},Ω) be a \mathcal{FFTS} and $\mathcal{N} \in \mathcal{FFS}(\mathbb{P})$. Then \mathcal{N} is called an ϵ -neighbourhood of a \mathcal{FFP} $x_{(\zeta,\xi)}^p$ of \mathbb{P} if $\exists \ \mathcal{G} \in \Omega$ such that $x_{(\zeta,\xi)}^p \in \mathcal{G} \subseteq \mathcal{N}$. The family of all an ϵ neighbourhood of $x_{(\zeta,\xi)}^p$ is denoted by $\mathfrak{N}(x_{(\zeta,\xi)}^p)$. DEFINITION 3.3. Let $\mathbb P$ be a non empty set and $\mathbb D$ is a directed set. A map $\phi: \mathbb D \to \mathcal{FFP}(\mathbb P)$ is called a Fermatean fuzzy $\operatorname{net}(\mathcal{FFN})$. We will write $\phi_d = \phi(d)$ (for $d \in \mathbb D$), $\phi = (\phi_d)_{d \in \mathbb D}$. DEFINITION 3.4. Let (\mathbb{P}, Ω) be a \mathcal{FFTS} and \mathcal{M} be a non empty crisp set of \mathbb{P} , let $\mathfrak{F} = \{M_{\alpha} \subset \mathcal{M} : \alpha \in \Delta\}$ be a \mathcal{FFFB} in \mathcal{M} Then : - (a) \mathcal{FFFB} \mathfrak{F} is called r-converges to a \mathcal{FFP} $x^p_{(\zeta,\xi)} \in \mathcal{M}$ (written as $\mathfrak{F} \to x^p_{(\zeta,\xi)}$), if $\forall \ \mathcal{N} \in \mathfrak{N}(x^p_{(\zeta,\xi)}) \ \exists \ \mathcal{M}_{\alpha} \in \mathfrak{F}$ such that $\mathcal{M}_{\alpha} \subset Cl(\mathcal{N})$. - (b) \mathcal{FFFB} \mathfrak{F} is called *r*-accumulates to a \mathcal{FFP} $x_{(\zeta,\xi)}^p \in \mathcal{M}$ (written as $\underset{r}{\propto} x_{(\zeta,\xi)}^p$), if $\forall \ \mathcal{N} \in \mathfrak{N}(x_{(\zeta,\xi)}^p)$ and each $\mathcal{M}_{\alpha} \in \mathfrak{F}$, $\mathcal{M}_{\alpha} \cap Cl(\mathcal{N}) \neq \tilde{0}$. Theorem 3.5. Let (\mathbb{P}, Ω) be a \mathcal{FFTS} , $\mathcal{M} \subset \mathbb{P}$ and $x^p_{(\zeta,\xi)} \in \mathcal{FFP}(\mathbb{P})$. - (a) Let \mathfrak{F} is a \mathcal{FFFB} in \mathcal{M} . If $\mathfrak{F} \to x^p_{(\zeta,\xi)} \in \mathcal{M}$, then $\mathfrak{F} \propto x^p_{(\zeta,\xi)}$. - (b) Let \mathfrak{F}_1 and \mathfrak{F}_2 be two \mathcal{FFFB} in \widetilde{M} and \mathfrak{F}_2 is stronger than $\mathfrak{F}_1(\mathfrak{F}_1 \subset \mathfrak{F}_2)$. If $\mathfrak{F}_2 \underset{r}{\propto} x^p_{(\zeta,\xi)} \in \mathcal{M}$, then $\mathfrak{F}_1 \underset{r}{\propto} x^p_{(\zeta,\xi)}$. - (c) Let \mathfrak{M} be a maximal \mathcal{FFFB} in \mathcal{M} . Then $\mathfrak{F} \propto x_{(\zeta,\xi)}^p \in \mathcal{M} \Leftrightarrow \mathfrak{F} \to x_{(\zeta,\xi)}^p$ Proof. Obvious and left to the readers. DEFINITION 3.6. Let (\mathbb{P}, Ω) be a \mathcal{FFTS} and \mathcal{M} be a non empty crisp subset of \mathbb{P} . Suppose \mathbb{D} is a directed set and $\phi : \mathbb{D} \to \mathcal{FFP}(\mathcal{M})$ is a \mathcal{FFN} . then: - (a) ϕ is called r-converges to a \mathcal{FFP} $x_{(\zeta,\xi)}^p \in \mathcal{M}(\text{ written as } \phi \to x_{(\zeta,\xi)}^p)$ if $\forall \ \mathcal{V} \in \Omega$ containing $x_{(\zeta,\xi)}^p$, $\exists \ b \in \mathbb{D}$ such that $\phi(T_b) \subset Cl(\mathcal{V})$. Where $\mathcal{T}_b = \{c \in \mathbb{D} : c \geq b\}$. - (b) ϕ called r-accumulates to a \mathcal{FFP} $x_{(\zeta,\xi)}^p \in \mathcal{M}$ (written as $\phi \underset{r}{\propto} x_{(\zeta,\xi)}^p$) if $\forall \ \mathcal{V} \in \Omega$ containing $x_{(\zeta,\xi)}^p$, and $\forall \ b \in \mathbb{D}$ such that $\phi(\mathcal{T}_b) \cap Cl(\mathbb{V}) \neq \tilde{0}$. Where $\mathcal{T}_b = \{c \in \mathbb{D} : c \geq b\}$. DEFINITION 3.7. If $\phi : \mathbb{D} \to \mathcal{FFP}(\mathcal{M})$ is a \mathcal{FFN} in $\mathcal{M} \subset \mathbb{P}$. Then the family $\mathfrak{F}(\phi) = \{\phi(\mathcal{T}_b) : c \in \mathbb{D}\}$ is a \mathcal{FFFB} in \mathcal{M} called a \mathcal{FFFB} associated to ϕ . THEOREM 3.8. Let (\mathbb{P}, Ω) be a FFTS. If $\mathfrak{F}(\phi)$ is a FFFB in $\mathcal{M} \subset \mathbb{P}$ associated to FFN ϕ . Then - (a) $\mathfrak{F}(\phi) \to x_{(\zeta,\xi)}^p \in \mathcal{M} \Leftrightarrow \phi \to x_{(\zeta,\xi)}^p$. - (b) $\mathfrak{F}(\phi) \propto x^p_{(\zeta,\xi)} \in \mathcal{M} \Leftrightarrow \phi \propto x^p_{(\zeta,\xi)}.$ Proof. Obvious. DEFINITION 3.9. Let $\mathbb P$ be a non empty set and $\mathcal M$ be a crisp subset of $\mathbb P$. Let $\mathfrak F$ be a $\mathcal F\mathcal F\mathcal F\mathcal B$ in $\mathbb P$ then consider the family $\mathbb D_{\mathfrak F}=\{(x^p_{(\zeta,\xi)},\mathfrak F):x^p_{(\zeta,\xi)}\in\mathcal F\mathcal F\mathcal P(\mathcal M),x^p_{(\zeta,\xi)}\in\mathcal F,\mathcal F\in\mathfrak F\}$ with the relation $(x^p_{(\zeta,\xi)},\mathcal F)\leq (x^{p'}_{(\zeta,\xi)},\mathcal F')\Leftrightarrow\mathcal F'\subseteq\mathcal F$. Then the \mathcal{FFN} $\phi_{\mathfrak{F}}: \mathbb{D}_{\mathfrak{F}} \to \mathcal{FFP}(\mathcal{M})$ such that $\phi_{\mathfrak{F}}(x^p_{(\zeta,\xi)},\mathcal{F}) = x^p_{(\zeta,\xi)}$ is called called \mathcal{FFN} associate to \mathfrak{F} . Theorem 3.10. In a FFTS (\mathbb{P}, Ω) , If $\phi_{\mathfrak{F}}: \mathbb{D} \to \mathcal{FFP}(\mathcal{M})$ is a FFN in $\mathcal{M} \subset \mathbb{P}$ associated to a FFFB \mathfrak{F} . then: - (a) $\mathfrak{F} \to x^p_{(\zeta,\xi)} \in \mathcal{M} \Leftrightarrow \phi_{\mathfrak{F}} \to x^p_{(\zeta,\xi)}$. - (b) $\mathfrak{F} \propto x_{(\zeta,\xi)}^p \in \mathcal{M} \Leftrightarrow \phi_{\mathfrak{F}} \propto x_{(\zeta,\xi)}^p$. PROOF. (a) Necessity. Since \mathfrak{F} r-converges to $x^p_{(\zeta,\xi)}$ in \mathcal{M} , $\forall \mathcal{N} \in \mathfrak{R}(x^p_{(\zeta,\xi)}) \; \exists \mathcal{M}_{\alpha} \in \mathfrak{F}$ such that $\mathcal{M}_{\alpha} \subset Cl(\mathcal{N})$. For every $\mathcal{FFP} \; x^q_{(\zeta,\xi)}$ such that $x^q_{(\zeta,\xi)} \in \mathcal{M}_{\alpha}$, $(x^q_{(\zeta,\xi)}, \mathcal{M}_{\alpha}) \in \mathbb{D}_{\mathfrak{F}}$. If $(x^{q'}_{(\zeta,\xi)}, \mathcal{M}_{\beta}) \in \mathbb{D}_{\mathfrak{F}}$ and $(x^{q'}_{(\zeta,\xi)}, \mathcal{M}_{\beta}) \geq (x^q_{(\zeta,\xi)}, \mathcal{M}_{\alpha})$ then $x^{q'}_{(\zeta,\xi)} \in \mathcal{M}_{\beta}$ and
$\mathcal{M}_{\beta} \subset \mathcal{M}_{\alpha}$. Thus $\phi_{\mathfrak{F}}(x^{q'}_{(\zeta,\xi)}, \mathcal{M}_{\beta}) = x^{q'}_{(\zeta,\xi)} \in \mathcal{M}_{\alpha} \subset Cl(\mathcal{N})$. Hence $\phi_{\mathfrak{F}} \to x^p_{(\zeta,\xi)}$. Sufficiency. Since $\phi_{\mathfrak{F}}$ r-converges to $x_{(\zeta,\xi)}^{p}$ in \mathcal{M} , $\forall \ \mathcal{N} \in \mathfrak{N}(x_{(\zeta,\xi)}^{p}) \ \exists \ (x_{(\zeta,\xi)}^{q_0}, \mathcal{M}_0) \in \mathbb{D}_{\mathfrak{F}}$ such that $\phi_{\mathfrak{F}}(x_{(\zeta,\xi)}^{q}, \mathcal{M}_{\alpha}) = x_{(\zeta,\xi)}^{q} \in \mathcal{M}_{\alpha} \subset Cl(\mathcal{N}) \ \forall \ (x_{(\zeta,\xi)}^{q}, \mathcal{M}_{\alpha}) \geq (x_{(\zeta,\xi)}^{q_0}, \mathcal{M}_0).$ This implies that $\mathcal{M}_0 \subset \mathcal{M}_{\alpha}$ because $\forall \ \mathcal{FFP} \ x_{(\zeta,\xi)}^{q}$ in $\mathbb{P} \ x_{(\zeta,\xi)}^{q} \in \mathcal{M}_0$ we have $(x_{(\zeta,\xi)}^{q}, \mathcal{M}_0) \geq (x_{(\zeta,\xi)}^{q_0}, \mathcal{M}_0), \ x_{(\zeta,\xi)}^{q} \in \mathcal{M}_{\alpha}.$ Consequently, $\mathcal{M}_0 \subset Cl(\mathcal{N})$. Hence, $\mathfrak{F} \to x_{(\zeta,\xi)}^{p} \in \mathcal{M}$. (b) Necessity. Since \mathfrak{F} r-accumulates to $x^p_{(\zeta,\xi)}$ in \mathcal{M} , $\forall \mathcal{N} \in \mathfrak{N}(x^p_{(\zeta,\xi)}) \exists \mathcal{M}_{\alpha} \in \mathfrak{F}$ such that $\mathcal{M}_{\alpha} \cap Cl(\mathcal{N}) \neq \tilde{0}$. For every \mathcal{FFP} $x^q_{(\zeta,\xi)}$ such that $x^q_{(\zeta,\xi)} \in \mathcal{M}_{\alpha}$, $(x^q_{(\zeta,\xi)}, \mathcal{M}_{\alpha}) \in \mathbb{D}_{\mathfrak{F}}$ and $(x^{q'}_{(\zeta,\xi)}, \mathcal{M}_{\beta}) \geq (x^q_{(\zeta,\xi)}, \mathcal{M}_{\alpha})$ then $(x^{q'}_{(\zeta,\xi)} \in \mathcal{M}_{\beta}) \cap Cl(\mathcal{N}) \neq \tilde{0}$. Hence, $\phi_{\mathfrak{F}} \propto x^p_{(\zeta,\xi)}$. Sufficiency. Since $\phi_{\mathfrak{F}}$ r-accumulates to $x_{(\zeta,\xi)}^{p}$ in \mathcal{M} , $\forall \ \mathcal{N} \in \mathfrak{N}(x_{(\zeta,\xi)}^{p}) \ \exists \ (x_{(\zeta,\xi)}^{q_{0}}, \mathcal{M}_{0}) \in \mathbb{D}_{\mathfrak{F}}$ such that $\phi_{\mathfrak{F}}(x_{(\zeta,\xi)}^{q}, \mathcal{M}_{\alpha}) = x_{(\zeta,\xi)}^{q} \in \mathcal{M}_{\alpha}$ and $\phi_{\mathfrak{F}}(x_{(\zeta,\xi)}^{q}, \mathcal{M}_{\alpha}) \cap Cl(\mathcal{N}) \neq \tilde{0}, \ \forall \ (x_{(\zeta,\xi)}^{q}, \mathcal{M}_{\alpha}) \geq (x_{(\zeta,\xi)}^{q_{0}}, \mathcal{M}_{0})$. This implies that $\mathcal{M}_{0} \subset \mathcal{M}_{\alpha}$ because $\forall \ \mathcal{FFP} \ x_{(\zeta,\xi)}^{q}$ in $\mathbb{P} \ x_{(\zeta,\xi)}^{q} \in \mathcal{M}_{0}$ we have $(x_{(\zeta,\xi)}^{q}, \mathcal{M}_{0}) \geq (x_{(\zeta,\xi)}^{q_{0}}, \mathcal{M}_{0}), \ x_{(\zeta,\xi)}^{q} \in \mathcal{M}_{\alpha}$. Consequently, $\mathcal{M}_{\alpha} \cap Cl(\mathcal{N}) \neq \tilde{0}$. Hence, $\mathfrak{F} \simeq x_{(\zeta,\xi)}^{p}$ in \mathcal{M} . # 4. Fermatean fuzzy C-compactness Definition 4.1. A family $\{\mathcal{G}_{\alpha}: \alpha \in \Lambda\}$ of \mathcal{FFFS} s of a \mathcal{FFFTS} (\mathbb{P}, Ω) is called a Fermatean fuzzy cover of \mathbb{P} if $\tilde{\mathbb{I}} = \bigcup_{\alpha \in \Lambda} \{\mathcal{G}_{\alpha}\}.$ DEFINITION 4.2. A \mathcal{FFTS} (\mathbb{P}, Ω) is called Fermatean fuzzy compact if every \mathcal{FFO} cover of \mathbb{P} has a finite sub cover. DEFINITION 4.3. A \mathcal{FFTS} (\mathbb{P}, Ω) is said to be Fermatean fuzzy C-compact(\mathcal{FFC} -compact) if \forall proper \mathcal{FFC} crisp set \mathcal{M} of (\mathbb{P}) and \forall \mathcal{FFO} cover { $\mathcal{G}_{\alpha}: \alpha \in \Lambda$ } of \mathcal{M} , \exists a finite number of elements $\mathcal{G}_{\alpha_1}, \mathcal{G}_{\alpha_2}, \mathcal{G}_{\alpha_3}, \dots \mathcal{G}_{\alpha_n}$ such that $\mathcal{M} \subset \bigcup_{i=1}^n \{Cl(\mathcal{G}_{\alpha_i})\}$. Theorem 4.4. Let (\mathbb{P}, Ω) be a FFTS. If \mathbb{P} is Fermatean fuzzy compact then it is FFC- compact. Proof. Easy and left to the readers. Definition 4.5. A $\mathcal{FFS} \mathcal{M}$ in a \mathcal{FFTS} (\mathbb{P}, Ω) is called: - (a) Fermatean fuzzy regular open (\mathcal{FFRO}) if $\mathcal{M} = Int(Cl(\mathcal{M}))$. The collection of all \mathcal{FFRO} sets of \mathbb{P} will be denoted by $\mathcal{FFROS}(\mathbb{P})$. - (b) Fermatean fuzzy regular closed (\mathcal{FFRC}) if $\mathcal{M}^c \in \mathcal{FFROS}(\mathbb{P})$. The collection of all \mathcal{FFRC} sets of \mathbb{P} will be denoted by $\mathcal{FFRCS}(\mathbb{P})$. Remark 4.6. In a FFTS (\mathbb{P}, Ω) , FFROS $(\mathbb{P}) \subset \Omega$ and FFRCS $(\mathbb{P}) \subset \mathcal{FFCS}(\mathbb{P})$, but the reverse containment may not be true. **Example** Let $\mathbb{P} = \{p_1, p_2\}$ be an universe of discourse and $\Omega = \{\tilde{0}, \mathcal{M}, \tilde{1}\}$ be a \mathcal{FFT} on \mathbb{P} . Where, $\mathcal{M} = \{ < p_1, 0.8, 0.7 >, < p_2, 0.7, 0.8 > \}$. Then $\mathcal{M} \in \Omega$ (resp. $\mathcal{M}^c \in \mathcal{FFCS}(\mathbb{P})$) but $\mathcal{M} \notin \mathcal{FFROS}(\mathbb{P})$ (resp. $\mathcal{M}^c \notin \mathcal{FFRCS}(\mathbb{P})$). Theorem 4.7. Let (\mathbb{P}, Ω) be a FFTS and $M \in \mathcal{FFS}(\mathbb{P})$. Then $Int(Cl(M)) \in \mathcal{FFROS}(\mathbb{P})$ and $Cl(Int(M)) \in \mathcal{FFRCS}(\mathbb{P})$. THEOREM 4.8. In a $\mathcal{FFTS}(\mathbb{P},\Omega)$ the next statements are equivalent: - (a) \mathbb{P} is \mathcal{FFC} -compact. - (b) For each FFC crisp set \mathcal{M} of \mathbb{P} and each FFRO cover $\mathcal{G} = \{\mathcal{G}_{\alpha} : \alpha \in \Lambda\}$ of $\mathcal{M} = \mathcal{G}$ a finite number of elements $\mathcal{G}_{\alpha_1}, \mathcal{G}_{\alpha_2}, \mathcal{G}_{\alpha_3}, \dots \mathcal{G}_{\alpha_n}$ of \mathcal{G} such that $\mathcal{M} \subseteq \bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})$. - (c) For each crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$ and for each collection $\mathcal{F} = \{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}$ of non empty \mathcal{FFRC} sets of \mathbb{P} such that $(\cap_{\alpha \in \Lambda} \mathcal{F}_{\alpha}) \cap \mathcal{M} = \tilde{0}$, \exists a finite number of elements $\mathcal{F}_{\alpha_1}, \mathcal{F}_{\alpha_2}, \mathcal{F}_{\alpha_3}, \dots \mathcal{F}_{\alpha_n}$ of \mathcal{F} such that $(\bigcap_{i=1}^n Int(\mathcal{F}_{\alpha_i})) \cap \mathcal{M} = \tilde{0}$. - (d) For each crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$ and for each collection $\mathcal{F} = \{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}$ of \mathcal{FFRC} sets of \mathbb{P} , if for each finite subcollection $\{\mathcal{F}_{\alpha_1}, \mathcal{F}_{\alpha_2}, \mathcal{F}_{\alpha_3}, \cdots \mathcal{F}_{\alpha_n}\}$, of \mathcal{F} has the property that $\bigcap_{i=1}^n (Int(\mathcal{F}_{\alpha_i})) \cap \mathcal{M} \neq \tilde{0}$, then $(\cap_{\alpha \in \Lambda} \mathcal{F}_{\alpha}) \cap \mathcal{M} \neq \tilde{0}$. - (e) For each crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$ and each \mathcal{FFFB} $\mathfrak{F} = \{\mathcal{M}_{\alpha} : \alpha \in \Lambda\}$ in $\mathcal{M} \exists a \mathcal{FFP} x_{(\zeta,\xi)}^p \in \mathcal{M} \text{ such that } \mathfrak{F} \subseteq x_{(\zeta,\xi)}^p$. - (f) For each crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$ and each maximal $\mathcal{FFFB} \mathfrak{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Lambda\}$ in $\mathcal{M} \exists a \mathcal{FFP} x_{(\zeta,\xi)}^p \in \mathcal{M}$ such that $\mathfrak{M} \simeq x_{(\zeta,\xi)}^p$. PROOF. (a) \Rightarrow (b) Follows easily from Definition 4.3 and Remark 4.6. (b) \Rightarrow (a). Suppose (b) holds.Let $\{\mathcal{G}_{\alpha}: \alpha \in \Lambda\}$ be a \mathcal{FFO} cover of a crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$. Then by thm $\{Int(Cl(\mathcal{G}_{\alpha})): \alpha \in \Lambda\}$. will be \mathcal{FFRO} cover of \mathcal{M} . Therefore, by (b) \exists a finite sub collection $\{Int(Cl(\mathcal{G}_{\alpha_i})): i = 1, 2, 3 \dots n\}$ such that $\mathcal{M} \subset \bigcup_{i=1}^n Cl(Int(Cl(\mathcal{G}_{\alpha_i}))) = \bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})$. Consequently, $\mathcal{M} \subset \bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})$ and \mathbb{P} is \mathcal{FFC} -compact. (b) \Rightarrow (c). Let \mathcal{M} be a crisp \mathcal{FFCS} of \mathbb{P} . Let $\mathcal{F} = \{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}$ be a collection of non empty \mathcal{FFRC} sets of \mathbb{P} such that $(\cap \{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}) \cap \mathcal{M} = \tilde{0}$ for each proper - crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$. Then $\mathcal{U} = \{\mathcal{F}_{\alpha}^c : \alpha \in \Lambda\}$ is \mathcal{FFRO} cover of crisp set $\mathcal{MFFCS}(\mathbb{P})$. Therefore \exists a finite sub collection $\{\mathcal{G}_{\alpha_i} = \mathcal{F}_{\alpha_i}^c : i = 1, 2, 3 \dots n\}$ of \mathcal{U} such that $\mathcal{M} \subset \bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})$. Now for each α_i we have, $Int(\mathcal{F}_{\alpha_i}) = Int(\mathcal{G}_{\alpha_i}^c) = (Cl(\mathcal{G}_{\alpha_i}^c)^c)^c = Cl(\mathcal{G}_{\alpha_i}^c)$. Therefore $\bigcap_{i=1}^n Int(\mathcal{F}_{\alpha_i}) = \bigcup_{i=1}^n (Cl(\mathcal{G}_{\alpha_i}))^c = \mathcal{M}^c$. This shows that $\bigcap_{i=1}^n (Int(\mathcal{F}_{\alpha_i})) \cap \mathcal{M} = \mathcal{M}^c \cap \mathcal{M} = \tilde{0}$, because \mathcal{M} is a crisp set of \mathbb{P} . - (c) \Rightarrow (b). Let $\mathcal{U} = \{\mathcal{G}_{\alpha} : \alpha \in \Lambda\}$ be a \mathcal{FFRO} cover of a proper crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$. Therefore, $\mathcal{M} \subset \bigcup_{\alpha \in \Lambda} \mathcal{G}_{\alpha}$. It follows that $\mathcal{M}^c \supseteq (\bigcup_{\alpha \in \Lambda} \mathcal{G}_{\alpha})^c = \bigcap_{\alpha \in
\Lambda} \mathcal{G}_{\alpha}^c$. And so, $(\bigcap_{\alpha \in \Lambda} \mathcal{G}_{\alpha}^c) \cap \mathcal{M} \subset \mathcal{M}^c \cap \mathcal{M} = \tilde{0}$, because \mathcal{M} is a crisp set of \mathbb{P} . Therefore $\mathcal{F} = \{\mathcal{G}_{\alpha}^c : \alpha \in \Lambda\}$ is a collection of non empty \mathcal{FFRCS} s of \mathbb{P} , satisfying $(\bigcap_{\alpha \in \Lambda} \mathcal{F}) \cap \mathcal{M} = \tilde{0}$. And so by (c), \exists a finite sub collection $\{\mathcal{G}_{\alpha_i}^c : i = 1, 2, 3 \dots n\}$ of \mathcal{F} such that $\bigcap_{i=1}^n (Int(\mathcal{G}_{\alpha_i}^c)) \cap \mathcal{M} = \tilde{0}$. It follows that, $\mathcal{M} \subset \bigcup_{i=1}^n (Int(\mathcal{G}_{\alpha_i}^c))^c$. Now for each α_i we have, $Int(\mathcal{G}_{\alpha_i}^c) = (Cl(\mathcal{G}_{\alpha_i}^c)^c)^c = Cl(\mathcal{G}_{\alpha_i})^c$. Therefore, we obtain that $\mathcal{M} \subset \bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})$. - (c) \Rightarrow (d). Let \mathcal{M} be a crisp \mathcal{FFC} set of \mathbb{P} . Let $\mathcal{F} = \{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}$ be a collection of non empty \mathcal{FFRC} sets of \mathbb{P} such that for every finite subcollection $\{\mathcal{F}_{\alpha_1}, \mathcal{F}_{\alpha_2}, \mathcal{F}_{\alpha_3}, \dots \mathcal{F}_{\alpha_n}\}$ of \mathcal{F} we have $\bigcap_{i=1}^n Int(\mathcal{F}_{\alpha_i}) \cap \mathcal{M} \neq \tilde{0}$. We want to show that $(\cap \mathcal{F}_{\alpha}) \cap \mathcal{M} \neq \tilde{0}$. If $(\cap \mathcal{F}_{\alpha}) \cap \mathcal{M} = \tilde{0}$, Then by (c), \exists a finite family $\{\mathcal{F}_{\alpha_1}, \mathcal{F}_{\alpha_2}, \mathcal{F}_{\alpha_3}, \dots \mathcal{F}_{\alpha_n}\}$, such that $\bigcap_{i=1}^n Int(\mathcal{F}_{\alpha_i}) \cap \mathcal{M} = \tilde{0}$, which is a contradiction. Hence $(\cap \mathcal{F}_{\alpha}) \cap \mathcal{M} \neq \tilde{0}$. - (d) \Rightarrow (c). Le \mathcal{M} be a crisp \mathcal{FFC} set of \mathbb{P} and $\mathcal{F} = \{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}$ be a collection of non empty \mathcal{FFRC} sets of \mathbb{P} such that $(\cap \mathcal{F}_{\alpha_i}) \cap \mathcal{M} = \tilde{0}$. We have to show that \exists a finite integer (say) n such that $\bigcap_{i=1}^n int(\mathcal{F}_{\alpha_i}) \cap \mathcal{M} = \tilde{0}$. Suppose now that for every finite integer n we have $\bigcap_{i=1}^n Int(\mathcal{F}_{\alpha_i}) \cap \mathcal{M} \neq \tilde{0}$. Then by (d) we have $(\cap \mathcal{F}_{\alpha}) \cap \mathcal{M} \neq \tilde{0}$ which is a contradiction. - (a) \Rightarrow (e). Suppose $\exists \ \mathcal{FFFB} \ \mathfrak{F} = \{\mathcal{M}_{\alpha} : \alpha \in \Lambda\}$ in \mathcal{M} , such that $\mathfrak{F} \underset{r}{\propto} x_{(\zeta,\xi)}^p$ for all $\mathcal{FFP} x_{(\zeta,\xi)}^p \in \mathcal{M}$. Then $\forall \ x_{(\zeta,\xi)}^p \in \mathcal{M} \ \exists \ \mathcal{N}(x_{(\zeta,\xi)}^p) \in \Omega$ and some $\mathcal{M}_{\alpha(x_{(\zeta,\xi)}^p)} \in \mathfrak{F}$ such that $\mathcal{M}_{\alpha(x_{(\zeta,\xi)}^p)} \cap Cl(\mathcal{N}(x_{(\zeta,\xi)}^p)) = \tilde{0}$. The collection $\{\mathcal{N}(x_{(\zeta,\xi)}^p) : x_{(\zeta,\xi)}^p \in \mathcal{M}\}$ is a \mathcal{FFO} cover of \mathcal{M} , so by (a) \exists a finite sub collection $\{\mathcal{N}(x_{(\zeta,\xi)}^p) : i = 1,2,3,\ldots,n\}$ such that $\mathcal{M} \subset \bigcup_{i=1}^n Cl(\mathcal{N}(x_{(\zeta_i,\xi_i)}^p))$. Let $\mathcal{M}_{\alpha_0} \in \mathfrak{F}$ such that $\mathcal{M}_{\alpha_0} \subset \bigcap_{i=1}^n \mathcal{M}_{\alpha(x_{(\zeta_i,\xi_i)}^p)}$. Since $\mathcal{M}_{\alpha_0} \neq \tilde{0}$ there is some $1 \leq j \leq n$ such that $\mathcal{M}_{\alpha_0} \cap Cl(\mathcal{N}(x_{(\zeta_j,\xi_j)}^p)) \neq \tilde{0}$. This implies that $\mathcal{M}_{\alpha(x_{(\zeta_i,\xi_i)}^p)} \cap Cl(\mathcal{N}(x_{(\zeta_i,\xi_i)}^p)) \neq \tilde{0}$ which is a contradiction . - (e) \Rightarrow (d). Suppose \exists a crisp $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$ and a collection $\{\mathcal{F}_{\alpha} : \alpha \in \Lambda\}$ of \mathcal{FFRC} sets of \mathcal{P} such that each finite subcollection $\{\mathcal{F}_{\alpha_i} : i = 1, 2, 3, \dots, n\}$ has a property that $(\cap_{i=1}^n Int(\mathcal{F}_{\alpha_i})) \cap \mathcal{M} \neq \tilde{0}$, but $(\cap_{\alpha} F_{\alpha}) \cap \mathcal{M} = \tilde{0}$. Then $(Int(\mathcal{F}_{\alpha_i})) \cap \mathcal{M}$, $\alpha \in \Lambda$, together with all finite intersection of the form $\cap_{i=1}^n (Int(\mathcal{F}_{\alpha_i})) \cap \mathcal{M}$, form a \mathcal{FFFB} \mathfrak{F} in \mathcal{M} . Then by (e) \mathfrak{F} r-accumulates to some \mathcal{FFP} $x_{(\zeta,\xi)}^p \in \mathcal{M}$. Thus $\forall \mathcal{N}(x_{(\zeta,\xi)}^p)$ containing $x_{(\zeta,\xi)}^p$ and each $Int(\mathcal{F}_{\alpha})$, $Cl(\mathcal{N}(x_{(\zeta,\xi)}^p)) \cap (Int(\mathcal{F}_{\alpha}) \cap \mathcal{M}) \neq \tilde{0}$. The fact $\mathcal{F}_{\alpha} \cap \mathcal{M} \neq \tilde{0}$, $\forall \alpha \in \Lambda$ and the assumption that $(\cap_{\alpha} \mathcal{F}_{\alpha}) \cap \mathcal{M} = \tilde{0}$ give the existence of an $\alpha_0 \in \Lambda$ such that $x_{(\zeta,\xi)}^p \notin \mathcal{F}_{\alpha_0}$. Therefore, $x_{(\zeta,\xi)}^p \notin Int(\mathcal{F}_{\alpha_0})$ so that $x_{(\zeta,\xi)}^p \in (\mathcal{F}_{\alpha_0})^c \subset (Int(\mathcal{F}_{\alpha_0}))^c$. It then follows that $x_{(\zeta,\xi)}^p \in (\mathcal{F}_{\alpha_0})^c \subset Cl((\mathcal{F}_{\alpha_0})^c) \subset (Int(\mathcal{F}_{\alpha_0}))^c$ which implies $Cl((\mathcal{F}_{\alpha_0})^c) \cap Int(\mathcal{F}_{\alpha_0}) = \tilde{0}$, but this means $\mathfrak{F} \propto_r x$. The contradiction gives $(\cap_{\alpha} F_{\alpha}) \cap \mathcal{M} \neq \tilde{0}$. - (e) \Rightarrow (f) Let $\mathfrak{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Lambda\}$ be a maximal \mathcal{FFFB} in a crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$. Then by (e) $\mathfrak{M} \propto x_{(\zeta,\xi)}^p \in \mathcal{M}$ so that $\mathfrak{M} \xrightarrow{r} x_{(\zeta,\xi)}^p$ by Theorem 3.5(c). - (f) \Rightarrow (e) Let $\mathfrak{F} = \{\mathcal{M}_{\alpha} : \alpha \in \Lambda\}$ be a \mathcal{FFFB} in a crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$. Then \exists a maximal \mathcal{FFFB} \mathfrak{M} such that $\mathfrak{M} \subset \mathfrak{F}$. By (f) $\mathfrak{M} \xrightarrow{r} x^p_{(\zeta,\xi)}$. Appling Theorem 3.5(a) and (b) we obtain that $\mathfrak{F} \propto x^p_{(\zeta,\xi)}$. Theorem 4.9. In a $\mathcal{FFTS}(\mathbb{P},\Omega)$ the next statements are equivalent: - (a) \mathbb{P} is \mathcal{FFC} -compact. - (b) For each crisp set $M \in \mathcal{FFCS}(\mathbb{P})$ and each \mathcal{FFN} ϕ in M, $\exists \ a \ \mathcal{FFP} \ x^p_{(\zeta,\xi)} \in M$ such that $\phi \propto x^p_{(\zeta,\xi)}$. - (c) For each crisp set $\mathcal{M} \in \mathcal{FFCS}(\mathbb{P})$ and each universal $\mathcal{FFN} \neq in \mathcal{M} \exists a \mathcal{FFP} x^p_{(\mathcal{LE})} \in \mathcal{M}$ such that $\phi \to x^p_{(\mathcal{LE})}$. Proof. Obvious. Theorem 4.10. Let (\mathbb{P}, Ω) be a FFTS. Then the next conditions are equivalent: - (a) \mathbb{P} is \mathcal{FFC} -compact. - (b) If \mathcal{M} is a crisp \mathcal{FFCS} set of \mathbb{P} and \mathfrak{F} is a collection of \mathcal{FFRC} sets of \mathbb{P} such that $\mathcal{M} \subseteq (\cap_{\mathcal{F} \in \mathfrak{F}} \mathcal{F})^c \ \exists \ a \ finite \ number \ of \ elements \ of \ \mathfrak{F} \ say \ \mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \dots \mathcal{F}_n, \ such \ that \ \mathcal{M} \subseteq (\cap_{i=1}^n (Int(\mathcal{F}_i)))^c.$ PROOF. (a) \Rightarrow (b). Suppose that \mathbb{P} is \mathcal{FFC} -compact. Let \mathcal{M} is a crisp \mathcal{FFC} set of \mathbb{P} and \mathfrak{F} is a collection of \mathcal{FFRC} sets of \mathbb{P} such that $\mathcal{M} \subseteq (\bigcap_{\mathcal{F} \in \mathfrak{F}} \mathcal{F})^c = \bigcup_{\mathcal{F} \in \mathfrak{F}} (\mathcal{F}^c)$. Clearly $\mathfrak{U} = \{\mathcal{F}^c : \mathcal{F} \in \mathfrak{F}\}$ is a \mathcal{FFRO} cover of \mathcal{M} . Since \mathbb{P} is \mathcal{FFC} -compact, by Theorem 4.8(b), \mathfrak{U} has a finite subcover $\{\mathcal{F}^c_i : i = 1, 2, 3, \dots n\}$ such that $\mathcal{M} \subseteq \bigcup_{i=1}^n (Cl(\mathcal{F}^c_i))$. But, $\bigcup_{i=1}^n (Cl(\mathcal{F}^c_i)) = (\bigcap_{i=1}^n (Int(\mathcal{F}_i,)))^c$ Hence, $\mathcal{M} \subseteq (\bigcap_{i=1}^n (Int(\mathcal{F}_i,)))^c$. (b) \Rightarrow (a). Let \mathcal{M} is a crisp \mathcal{FFC} set of \mathbb{P} . Let \mathfrak{F} be a collection of \mathcal{FFRO} sets of \mathbb{P} such that $\mathcal{M} \subseteq (\bigcup_{\mathcal{F} \in \mathfrak{F}} \mathcal{F})$. Put $\mathfrak{U} = \{\mathcal{F}^c : \mathcal{F} \in \mathfrak{F}\}$. Then \mathfrak{U} is clearly a collection of \mathcal{FFRC} sets of \mathbb{P} such that $\mathcal{M} \subseteq \bigcup_{\mathcal{F} \in \mathfrak{F}} \mathcal{F} = \bigcup_{\mathcal{F} \in \mathfrak{F}} (\mathcal{F}^c)^c = (\bigcap_{\mathcal{F} \in \mathfrak{F}} \mathcal{F}^c)^c$. Hence by (b) \exists a finite number of elements, say $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \dots \mathcal{F}_n$, such that $\mathcal{M} \subseteq (\bigcap_{i=1}^n (Int(\mathcal{F}_i^c)))^c = (\bigcup_{i=1}^n Cl(\mathcal{F}_i)$. Hence, \mathbb{P} is \mathcal{FFC} -compact. Definition 4.11. Let \mathfrak{F} be a \mathcal{FFFB} . Then the $\mathcal{FFS} \cap \{Cl(\mathcal{F}) : \mathcal{F} \in \mathfrak{F}\}$ is called Fermatean fuzzy adherent (\mathcal{FFB}) set of \mathfrak{F} . DEFINITION 4.12. A \mathcal{FFFB} \mathfrak{F} is said to be \mathcal{FFA} convergent if every \mathcal{FFO} neighborhood of the \mathcal{FFA} set of \mathfrak{F} contains an element of \mathfrak{F} . Theorem 4.13.
A $\mathcal{FFTS}(\mathbb{P},\Omega)$ is \mathcal{FFC} -compact if and only if every \mathcal{FFO} filter base is \mathcal{FFA} convergent. PROOF. Necessity: Let (\mathbb{P}, Ω) be a \mathcal{FFC} -compact and \mathfrak{F} be a \mathcal{FFO} filter base with the \mathcal{FFO} set \mathcal{M} . Let $mathcalN \in \Omega$ be a crisp set containing \mathcal{M} . Then the collection $\mathfrak{U} = \{(Cl(\mathcal{F}))^c : \mathcal{F} \in \mathfrak{F}\}$ be a \mathcal{FFO} cover of crisp \mathcal{FFC} set \mathcal{N}^c of \mathbb{P}). Since \mathbb{P} is \mathcal{FFC} -compact, \exists a finite sub family $\{(Cl(\mathcal{F}_i))^c : i = 1, 2, 3 \dots n\}$ of \mathfrak{U} such that $\mathcal{N}^c \subset \bigcup_{i=1}^n \{(Cl(\mathcal{F}_i))^c\} \subset \bigcup_{i=1}^n \{\mathcal{F}_i^c\} = \bigcap_{i=1}^n \{\mathcal{F}_i\}$. It follows that, $\bigcap_{i=1}^n \{\mathcal{F}_i\} \subset \mathcal{N}$. Since \mathfrak{F} is a \mathcal{FFFB} $\exists \mathcal{F} \in \mathfrak{F}$ such that $\mathcal{F} \subset \bigcap_{i=1}^n \{\mathcal{F}_i\} \subset \mathcal{N}$. Hence \mathfrak{F} is \mathcal{FFFA} convergent. Sufficiency: Assume that \mathbb{P} is not \mathcal{FFC} -compact and every \mathcal{FFO} filter base is \mathcal{FFA} convergent. Therefore, \exists a crisp \mathcal{FFC} set \mathcal{F} and a \mathcal{FFO} cover $\mathfrak{U} = \{\mathcal{G}_{\alpha}\}_{\alpha \in \Lambda}$ of \mathcal{F} such that $\mathcal{F} \not\subset \bigcup_{i=1}^n \{Cl(G_{\alpha i_i})\}$ for every finite sub family of \mathfrak{U} . Let $\mathcal{V}_n = \{(Cl(G_{\alpha_i}))^c : i = 1, 2, 3 \dots n\}$. Then $\{V_n\}$ is a \mathcal{FFO} filter base. Now, $\bigcap \{Cl(\mathcal{V}_n)\} = \bigcap_{i=1}^n \{(Cl(\mathcal{G}_{\alpha_i}))^c\} \subset \bigcap_{i=1}^n \{(\mathcal{G}_{\alpha_i})^c\} \subset \mathcal{F}^c$. Therefore $\exists \mathcal{V}_n$ contained in \mathcal{F}^c . Hence, $\mathcal{F} \subset \bigcup_{i=1}^n \{(Cl(\mathcal{G}_{\alpha_i}))\}$, which is a contradiction. Theorem 4.14. Let $\varphi: (\mathbb{P}, \Omega) \to (\mathbb{Q}, \tau)$ be a Fermatean fuzzy continuous surjective mapping and \mathbb{P} is \mathcal{FFC} -compact. Then \mathbb{Q} is \mathcal{FFC} -compact. PROOF. Let \mathcal{M} , be a crisp \mathcal{FFC} set of \mathbb{Q} . Let $\mathfrak{U} = \{\mathcal{G}_{\alpha} : \alpha \in \Lambda\}$ be a \mathcal{FFO} cover of \mathbb{Q} . Since φ is Fermatean fuzzy continuous, $\varphi^{-1}(\mathcal{M})$ is a crisp \mathcal{FFCS} of \mathbb{P} and $\{\varphi^{-1}(\mathcal{G}_{\alpha}) : \alpha \in \Lambda\}$ is a \mathcal{FFO} cover of $\varphi^{-1}(\mathcal{M})$ in \mathbb{P} . Since \mathbb{P} is \mathcal{FFC} -compact, there exists a finite sub family $\{\varphi^{-1}(\mathcal{G}_{\alpha_1}), \varphi^{-1}(\mathcal{G}_{\alpha_2}), \varphi^{-1}(\mathcal{G}_{\alpha_3}), \dots, \varphi^{-1}(\mathcal{G}_{\alpha_n})\}$ such that $\varphi^{-1}(\mathcal{M}) \subseteq \bigcup_{i=1}^n \{Cl(\varphi^{-1}(\mathcal{G}_{\alpha_i}))\} \subseteq \bigcup_{i=1}^n \{\varphi^{-1}(Cl(\mathcal{G}_{\alpha_i}))\}$. It follows that $\mathcal{M} \subseteq \bigcup_{i=1}^n \{Cl(\mathcal{G}_{\alpha_i})\}$. Hence, \mathbb{Q} is \mathcal{FFC} -compact. DEFINITION 4.15. Let (\mathbb{P}, Ω) be a \mathcal{FFTS} and \mathbb{Y} be a nonempty crisp subset of \mathbb{P} . Then $\Omega_{\mathbb{Y}} = \{\mathcal{M} \cap \mathbb{Y} : \mathcal{M} \in \Omega\}$, is said to be the Fermatean fuzzy relative topology on \mathbb{Y} and $(\mathbb{Y}, \Omega_{\mathbb{Y}})$ is called a Fermatean fuzzy subspace (\mathcal{FFSS}) of (\mathbb{P}, Ω) . THEOREM 4.16. Let $(\mathbb{Y}, \Omega_{\mathbb{Y}})$ be a \mathcal{FFSS} of a \mathcal{FFTS} (\mathbb{P}, Ω) and $M \in FFS(\mathbb{P})$, then: - (a) $\mathcal{M} \in \Omega_{\mathbb{Y}} \Leftrightarrow \mathcal{M} = \mathbb{Y} \cap O \text{ for some } O \in \Omega.$ - (b) $\mathcal{M} \in \mathcal{FFCS}(\mathbb{Y}) \Leftrightarrow \mathcal{M} = \mathbb{Y} \cap \mathcal{F} \text{ for some } \mathcal{F} \in FFSC(\mathbb{P}).$ THEOREM 4.17. Let $(\mathbb{Y}, \Omega_{\mathbb{Y}})$ be a FFSS of a FFTS (\mathbb{P}, Ω) and $M \in \Gamma_{\mathbb{Y}}$. If $\mathbb{Y} \in \Omega$ then $M \in \Omega$. THEOREM 4.18. Let $(\mathbb{Y}, \Omega_{\mathbb{Y}})$ be a \mathcal{FFSS} of a \mathcal{FFTS} (\mathbb{P}, Ω) . Then a \mathcal{FFS} $\mathcal{M}_{\mathbb{Y}} \in FFCS(\mathbb{Y}) \Rightarrow \mathcal{M}_{\mathbb{Y}} \in FFCS(\mathbb{P}) \Leftrightarrow \mathbb{Y} \in FFCS(\mathbb{P})$. DEFINITION 4.19. A crisp subset \mathcal{M} of a $\mathcal{FFTS}(\mathbb{P}, \Omega)$ is called \mathcal{FFC} -compact if the $\mathcal{FFSS}(\mathbb{M}, \Omega_M)$ is \mathcal{FFC} -compact. Definition 4.20. A subset \mathcal{M} of a \mathcal{FFTS} (\mathbb{P}, Ω) is called \mathcal{FFC} -compact relative to Ω if every \mathcal{FFO} cover of \mathcal{M} has a finite subfamily whose closure covers \mathcal{M} . Theorem 4.21. Every Fermatean fuzzy closed open crisp subset of a \mathcal{FFC} -compact space is \mathcal{FFC} -compact. Theorem 4.22. Every Fermatean fuzzy closed crisp subset \mathcal{M} of an FFC-compact space (\mathbb{P}, Ω) is FFC-compact relative to Ω . Proof. Follows from Definition 4.20 and Theorem 4.18 Theorem 4.23. A \mathcal{FFTS} (\mathbb{P}, Ω) is \mathcal{FFC} -compact if \mathbb{P} is the finite union of \mathcal{FFO} *C*-compact crisp subsets. PROOF. suppose $\mathbb{P} = \mathcal{M} \cup \mathcal{N}$ where \mathcal{M} and \mathcal{N} are \mathcal{FFO} crisp subsets of \mathbb{P} and $(\mathcal{M}, \Omega_{\mathcal{M}}), (\mathcal{N}, \Omega_{\mathcal{N}})$ are \mathcal{FFC} -compact. Let \mathcal{K} be a crisp \mathcal{FFCS} in \mathbb{P} and $\{\mathcal{G}_{\alpha} : \alpha \in \Lambda\}$ be a \mathcal{FFO} cover of \mathcal{K} . Since $\mathcal{M} \in \Omega$, $\{\mathcal{G}_{\alpha} \cap \mathcal{M} : \alpha \in \Lambda\}$ is a $\Omega_{\mathcal{M}} - \mathcal{FFO}$ cover of the $\Omega_{\mathcal{M}} - \mathcal{FFC}$ crisp subset $\mathcal{K} \cap \mathcal{M}$ of \mathcal{M} . By hypothesis $\mathcal{K} \cap \mathcal{M} \subset \bigcup_{i=1}^n \Omega_{\mathcal{M}} - Cl(\mathcal{G}_{\alpha_i}) \cap \mathcal{M} \subset \bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})$ for some $n \in \mathbb{N}$. Similarly $K \cap \mathcal{N} \subset \bigcup_{i=1}^m Cl(\mathcal{G}_{\beta_i})$, for some $m \in \mathbb{N}$. Hence, $\mathcal{K} \subset (\bigcup_{i=1}^n Cl(\mathcal{G}_{\alpha_i})) \bigcup (\bigcup_{j=1}^m Cl(\mathcal{G}_{\beta_j}))$ which implies that \mathbb{P} is \mathcal{FFC} -compact. Theorem 4.24. A FFTS (\mathbb{P}, Ω) is FFC-compact if \mathbb{P} is the finite union of subsets of \mathbb{P} which are FFC-compact relative to Ω . Proof. Similar to that of Theorem 4.23 ### **Author contributions:** Conceptualisation: S. S.Thakur , M. Thakur ; Software: M. Thakur, A. S. Rajput; Writing-Original Draft: M. Thakur, A. S. Rajput; Checking: S. S.Thakur **Conflicts of Interest:** The authors declare no conflict of interest. #### References - [1] K. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems 20(1)(1986), 87–96. - [2] H. Z. Ibrahim, H.Z., Fermatean Fuzzy Topological Spaces, Journal of Applied Mathematics and Informatics 40(1-2)(2022), 85–98. - [3] C. L. Chang, *Fuzzy Topological Spaces*, Journal of Mathematical Analysis and its Applications **24**(1)(1968), 182-190. - [4] D. Coker, *Introductions to Intuitionistic Fuzzy Topological Spaces*, Fuzzy Sets and Systems **88**(1)(1997), 81–89. - [5] D. Coker, and A.Es. Hayder, On Fuzzy Compactness in Intuitionistic Fuzzy Topological Spaces, Journal of Fuzzy Mathematics 5(2)(1997), 365–378. - [6] H. Gurcay, D. Coker, and A.Es. Hayder, *On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces*, Journal of Fuzzy Mathematics **5**(2)(1997) 365–378. - [7] L. L. Herrington, and P. E.Long, Characterization of C-compact Spaces, Proceedings of the American mathematical Society 52(1975), 417–426. - [8] F. G. Lupianez, Nets and Filters in Intuitionistic Fuzzy Topological Spaces, Information Sciences 176 (2006), 2396—2404 - [9] M. Olgun, M. Ünver, and S. Yardımc, Pythagorean Fuzzy Topological Spaces, Complex and Intelligent Systems 5(2019), 177–183. - [10] X. Peng, and Y. Yang, Some results for Pythagorean Fuzzy Sets, International Journal of Intelligent Systems 30(2015),1133—1160. - [11] T. Senapati, and R.R. Yager, *Fermatean Fuzzy Sets*, Journal of Ambient Intelligence and Humanized Computing **11**(2020), 663–674. - [12] T. Senapati, and R.R. Yager, Some new operations over Fermatean Fuzzy Numbers and application of Fermatean Fuzzy WPM in Multi-criteria Decision Making, Informatica 30(2)(2021), 391–412. - [13] S. S. Thakur, C.P. Rahore, and M. Thakur, Generalized e-closed Sets and Generalized e-continuity in Intuitionistic fuzzy Topology, Journal of Mathematics and Computer Science 25(3)(2021), 219-=231. - [14] S. S. Thakur, C.P. Rathore, and J.P. Bajpai, Intuitionistic Fuzzy Semi δ-preopen Sets and Intuitionistic Fuzzy Semi δ-precontinuity, Journal of Indonesean Mathematical Society 25(2)(2021), 212–227. - [15] S. S. Thakur., and R. Chaturvedi, Generalized Closed Set in Intuitionistic Fuzzy Topology Journal of Fuzzy Mathematics 16(3)(2008),559–572. - [16] S. S. Thakur, and J.P. Bajpai, On Intutionistic Fuzzy gpr-closed Sets, Fuzzy Information and Engineering 4(4)(2012) 425-444. - [17] G. Viglino, *C-compact Spaces*, Duke Journal of Mathematics **36**(4)(1969), 761-764. - [18] R. R. Yager, Pythagorean Fuzzy Subsets, In: Editor, Pedrycz, W. Reformat, Marek Z.,(eds) Proceedings of the 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS): 57–61, IEEE, Edmonton, Canada. - [19] L. A. Zadeh, *Fuzzy Sets*, Information and Control **18**(1965), 338-=353. Mahima Thakur,
Department of Applied Mathematics, Jabalpur Engineering College Jabalpur (M.,P.)-482011, India e-mail: mahimavthakur@gmail.com Samajh Singh Thakur, Department of Applied Mathematics, Jabalpur Engineering College Jabalpur (M.,P.)-482011, India e-mail: ssthakur@jecjabalpur.ac.in Alpa Singh Rajput, Department of Mathematics, DIT University, Dehradun, Uttarakhand, India e-mail: alpa.singh.rajput@dituniversity.edu.in